Quantum Hall effect in semiconductor systems with quantum dots and antidots

被引:2
|
作者
Beltukov, Ya M. [1 ]
Greshnov, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Electrotech Univ LETI, St Petersburg 197376, Russia
基金
俄罗斯基础研究基金会;
关键词
MAGNETIC-FIELD; STATES; INAS;
D O I
10.1134/S1063782615040077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T similar to 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [21] Roadmap for quantum simulation of the fractional quantum Hall effect
    Kaicher, Michael P.
    Jaeger, Simon B.
    Dallaire-Demers, Pierre-Luc
    Wilhelm, Frank K.
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [22] Optimal quantum control for conditional rotation of exciton qubits in semiconductor quantum dots
    Mathew, Reuble
    Pryor, Craig E.
    Flatte, Michael E.
    Hall, Kimberley C.
    PHYSICAL REVIEW B, 2011, 84 (20)
  • [23] Effect of shape and size on electron transition energies of InAs semiconductor quantum dots
    Li, YM
    Voskoboynikov, O
    Lee, CP
    Sze, SM
    Tretyak, O
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (4B): : 2698 - 2700
  • [24] Screening effect on the exciton mediated nonlinear optical susceptibility of semiconductor quantum dots
    Bautista, Jessica E. Q.
    Lyra, Marcelo L.
    Lima, R. P. A.
    OPTICS EXPRESS, 2014, 22 (23): : 28270 - 28275
  • [25] Dicke model for quantum Hall systems
    Hama, Y.
    Fauzi, M. H.
    Nemoto, K.
    Hirayama, Y.
    Ezawa, Z. F.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [26] Coulomb correlations of charged excitons in semiconductor quantum dots
    Oberli, D. Y.
    Byszewski, M.
    Chalupar, B.
    Pelucchi, E.
    Rudra, A.
    Kapon, E.
    PHYSICAL REVIEW B, 2009, 80 (16)
  • [27] Uq[sl(2)] Quantum Algebra in Quantum Hall Effect
    A. Jellal
    International Journal of Theoretical Physics, 1999, 38 : 1893 - 1899
  • [28] Spin relaxation and antiferromagnetic coupling in semiconductor quantum dots
    Tackeuchi, A.
    Kuroda, T.
    Yamaguchi, K.
    Nakata, Y.
    Yokoyama, N.
    Takagahara, T.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2) : 354 - 358
  • [29] Numerical studies of the fractional quantum Hall effect in systems with tunable interactions
    Papic, Z.
    Abanin, D. A.
    Barlas, Y.
    Bhatt, R. N.
    IUPAP C20 CONFERENCE ON COMPUTATIONAL PHYSICS (CCP 2011), 2012, 402
  • [30] Fractional quantum Hall effect at ν = 2
    Balram, Ajit C.
    Wojs, A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):