Quantum Hall effect in semiconductor systems with quantum dots and antidots

被引:2
|
作者
Beltukov, Ya M. [1 ]
Greshnov, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Electrotech Univ LETI, St Petersburg 197376, Russia
基金
俄罗斯基础研究基金会;
关键词
MAGNETIC-FIELD; STATES; INAS;
D O I
10.1134/S1063782615040077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T similar to 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [1] Effect of magnetic field on energy states and optical properties of quantum dots and quantum antidots
    Rahimi, Fatemeh
    Ghaffary, Tooraj
    Naimi, Yaghoob
    Khajehazad, Hadi
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)
  • [2] Effect of magnetic field on energy states and optical properties of quantum dots and quantum antidots
    Fatemeh Rahimi
    Tooraj Ghaffary
    Yaghoob Naimi
    Hadi Khajehazad
    Optical and Quantum Electronics, 2021, 53
  • [4] Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes
    Kou, A.
    Marcus, C. M.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [5] Optical properties of quantum dots versus quantum antidots: Effects of hydrostatic pressure and temperature
    Naimi, Y.
    Jafari, A. R.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 666 - 672
  • [6] Controllable quantum scars in semiconductor quantum dots
    Keski-Rahkonen, J.
    Luukko, P. J. J.
    Kaplan, L.
    Heller, E. J.
    Rasanen, E.
    PHYSICAL REVIEW B, 2017, 96 (09)
  • [7] Quantum Hall effect-insulator transition in the InAs/GaAs system with quantum dots
    V. A. Kul’bachinskii
    R. A. Lunin
    V. A. Rogozin
    A. V. Golikov
    V. G. Kytin
    B. N. Zvonkov
    S. M. Nekorkin
    D. O. Filatov
    A. de Visser
    Physics of the Solid State, 2003, 45 : 762 - 767
  • [8] Pseudospin anisotropy of trilayer semiconductor quantum Hall ferromagnets
    Miravet, D.
    Proetto, C. R.
    PHYSICAL REVIEW B, 2016, 94 (08)
  • [9] Quantum Hall effect in quantum electrodynamics
    Penin, Alexander A.
    PHYSICAL REVIEW B, 2009, 79 (11):
  • [10] Embedded quantum dots in semiconductor nanostructures
    Paredes Gutierrez, H.
    Perez Merchancano, S. T.
    5TH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY (5TH IMRMPT), 2019, 1386