Quantum Hall effect in semiconductor systems with quantum dots and antidots

被引:2
|
作者
Beltukov, Ya M. [1 ]
Greshnov, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Electrotech Univ LETI, St Petersburg 197376, Russia
基金
俄罗斯基础研究基金会;
关键词
MAGNETIC-FIELD; STATES; INAS;
D O I
10.1134/S1063782615040077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T similar to 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [1] Quantum Hall effect in semiconductor systems with quantum dots and antidots
    Ya. M. Beltukov
    A. A. Greshnov
    Semiconductors, 2015, 49 : 483 - 491
  • [2] SPECTROSCOPY OF QUANTUM DOTS AND ANTIDOTS
    HEITMANN, D
    KERN, K
    DEMEL, T
    GRAMBOW, P
    PLOOG, K
    ZHANG, YH
    SURFACE SCIENCE, 1992, 267 (1-3) : 245 - 252
  • [3] Effect of Charge State in Nearby Quantum Dots on Quantum Hall Systems
    K. Takehana
    Y. Imanaka
    T. Takamasu
    M. Henini
    Journal of Low Temperature Physics, 2010, 159 : 234 - 237
  • [4] Effect of Charge State in Nearby Quantum Dots on Quantum Hall Systems
    Takehana, K.
    Imanaka, Y.
    Takamasu, T.
    Henini, M.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 159 (1-2) : 234 - 237
  • [5] Quantum Hall effect in bilayer system with array of antidots
    Pagnossin, I. R.
    Gusev, G. M.
    Sotomayor, N. M.
    Seabra, A. C.
    Quivy, A. A.
    Lamas, T. E.
    Portal, J. C.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 677 - +
  • [6] GENERAL PICTURE OF QUANTUM HALL TRANSITIONS IN QUANTUM ANTIDOTS
    MACE, DR
    BARNES, CHW
    FAINI, G
    MAILLY, D
    SIMMONS, MY
    FORD, CJB
    PEPPER, M
    PHYSICAL REVIEW B, 1995, 52 (12) : R8672 - R8675
  • [7] Upstream modes and antidots poison graphene quantum Hall effect
    Moreau, N.
    Brun, B.
    Somanchi, S.
    Watanabe, K.
    Taniguchi, T.
    Stampfer, C.
    Hackens, B.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Upstream modes and antidots poison graphene quantum Hall effect
    N. Moreau
    B. Brun
    S. Somanchi
    K. Watanabe
    T. Taniguchi
    C. Stampfer
    B. Hackens
    Nature Communications, 12
  • [9] Quantum Hall Effect In AlGaAs and Graphite Quantum Dots
    Shrivastava, Keshav N.
    NANOSYNTHESIS AND NANODEVICE, 2013, 667 : 1 - +
  • [10] Kondo effect of quantum dots in the quantum Hall regime
    Choi, MS
    Hwang, NY
    Yang, SRE
    PHYSICAL REVIEW B, 2003, 67 (24)