Local Equilibrium Controllability of a Spherical Robot Actuated by a Pendulum

被引:0
作者
Gajbhiye, Sneha [1 ]
Banavar, Ravi N. [1 ]
机构
[1] Indian Inst Technol, Syst & Control Engn Dept, Bombay 400076, Maharashtra, India
来源
2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2013年
关键词
SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present local equilibrium configuration controllability analysis of a spherical robot. The robot is actuated by the principle of displacing the center of gravity of the system using an internal mechanism. The system is defined on a trivial principal fiber bundle, characterized by base body motion and the shape dynamics, and the equations of motion are in the form of the nonholonomic Euler-Poincare equation with advected dynamics. Using Lie brackets and symmetric products of the potential and control vector fields, local configuration accessibility and local (fiber) equilibrium controllability are presented.
引用
收藏
页码:1616 / 1621
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2005, GEOMETRIC CONTROL ME
[2]  
Bloch A. M., 2003, NONHOLONOMIC MECH CO
[3]  
Bullo R, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, P1741, DOI 10.1109/ROBOT.2002.1014793
[4]  
Cendra H., 1998, AM MATH SOC TRANSL 2, V186
[5]   Simple mechanical control systems with constraints and symmetry [J].
Cortés, J ;
Martínez, S ;
Ostrowski, JP ;
Zhang, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (03) :851-874
[6]   GEOMETRIC STRUCTURES IN SYSTEMS-THEORY [J].
CROUCH, PE .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1981, 128 (05) :242-251
[7]  
Gajbhiye Sneha., 2012, IFAC Proceedings Volumes, V45, P72
[8]  
Holm D.D., 2009, Oxford Texts in Applied and Engineering Mathematics
[9]  
Lewis A., 1995, CONFIGURATION CONTRO, P1
[10]   Configuration controllability of simple mechanical control systems [J].
Lewis, AD ;
Murray, RM .
SIAM REVIEW, 1999, 41 (03) :555-574