On the Independence Number of Edge Chromatic Critical Graphs

被引:0
作者
Miao Lianying [1 ]
机构
[1] China Univ Min & Technol, Sch Sci, Xuzhou 221008, Jiangsu, Peoples R China
关键词
edge coloring; critical graphs; independence number; MAXIMUM DEGREE-7; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V, E) with maximum degree Delta and independence number alpha(G), alpha(G) <= vertical bar V vertical bar/2. This conjecture is still open. In this paper, we prove that alpha(G) <= 3 Delta-2/5 Delta-2 vertical bar V vertical bar for Delta = 11,12 and alpha(G) <= 11 Delta-30/17 Delta-30 vertical bar V vertical bar for 13 <= Delta <= 29. This improves the known bounds for Delta is an element of {11, 12, ..., 29}.
引用
收藏
页码:471 / 481
页数:11
相关论文
共 10 条
[1]   Bounds for the independence number of critical graphs [J].
Brinkmann, G ;
Choudum, SA ;
Grünewald, S ;
Steffen, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :137-140
[2]   Independent sets and 2-factors in edge-chromatic-critical graphs [J].
Grünewald, S ;
Steffen, E .
JOURNAL OF GRAPH THEORY, 2004, 45 (02) :113-118
[3]   Edge coloring of graphs with small maximum degrees [J].
Li, Shuchao ;
Li, Xuechao .
DISCRETE MATHEMATICS, 2009, 309 (14) :4843-4852
[4]   A note on Vizing's independence number conjecture of edge chromatic critical graphs [J].
Luo, Rong ;
Zhao, Yue .
DISCRETE MATHEMATICS, 2006, 306 (15) :1788-1790
[5]   An application of Vizing and Vizing-like adjacency lemmas to Vizing's Independence Number Conjecture of edge chromatic critical graphs [J].
Luo, Rong ;
Zhao, Yue .
DISCRETE MATHEMATICS, 2009, 309 (09) :2925-2929
[6]   The Size of Edge Chromatic Critical Graphs with Maximum Degree 6 [J].
Luo, Rong ;
Miao, Lianying ;
Zhao, Yue .
JOURNAL OF GRAPH THEORY, 2009, 60 (02) :149-171
[7]   Planar graphs of maximum degree seven are class I [J].
Sanders, DP ;
Zhao, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :201-212
[8]  
Vizing V.G., 1965, Diskret. Analiz, P9
[9]  
Vizing V. G., 1968, Uspekhi Mat. Nauk, V23, P117
[10]   Every planar graph with maximum degree 7 is of class 1 [J].
Zhang, LM .
GRAPHS AND COMBINATORICS, 2000, 16 (04) :467-495