DISTRIBUTED PARTICLE METROPOLIS-HASTINGS SCHEMES

被引:0
|
作者
Martino, Luca [1 ]
Elvira, Victor [2 ]
Camps-Valls, Gustau [1 ]
机构
[1] Univ Valencia, Image Proc Lab, Valencia, Spain
[2] IMT Lille Douai CRISTAL, UMR 9189, Villeneuve Dascq, France
来源
2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2018年
基金
欧洲研究理事会;
关键词
Particle MCMC; Particle Filtering; Monte Carlo; Bayesian inference; state-space models; RESAMPLING ALGORITHMS; SELECTION; TRACKING;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a Particle Metropolis-Hastings algorithm driven by several parallel particle filters. The communication with the central node requires the transmission of only a set of weighted samples, one per filter. Furthermore, the marginal version of the previous scheme, called Distributed Particle Marginal Metropolis-Hastings (DPMMH) method, is also presented. DPMMH can be used for making inference on both a dynamical and static variable of interest. The ergodicity is guaranteed, and numerical simulations show the advantages of the novel schemes.
引用
收藏
页码:553 / 557
页数:5
相关论文
共 50 条
  • [1] Quasi-Newton particle Metropolis-Hastings
    Dahlin, Johan
    Lindsten, Fredrik
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2015, 48 (28): : 981 - 986
  • [2] Implementing particle filters with Metropolis-Hastings algorithms
    Zhai, Y
    Yeary, M
    2004 IEEE REGION 5 CONFERENCE: ANNUAL TECHNICAL AND LEADERSHIP WORKSHOP, 2004, : 149 - 152
  • [3] METROPOLIS-HASTINGS IMPROVED PARTICLE SMOOTHER AND MARGINALIZED MODELS
    Nordh, Jerker
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 973 - 977
  • [4] An Improved Metropolis-Hastings Algorithm Based on Particle Filter
    Yang, Yanfang
    Zhang, Yanjie
    Zhou, Yingjun
    Zhang, Wenhua
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 415 - 417
  • [5] Particle Metropolis-Hastings using gradient and Hessian information
    Dahlin, Johan
    Lindsten, Fredrik
    Schon, Thomas B.
    STATISTICS AND COMPUTING, 2015, 25 (01) : 81 - 92
  • [6] Distributed Kalman filter based on Metropolis-Hastings sampling strategy
    Hu, Zhen-tao
    Fu, Chun-ling
    Zhou, Lin
    Guo, Zhen
    MACHINE VISION AND APPLICATIONS, 2018, 29 (06) : 1033 - 1040
  • [7] Metropolis-Hastings via Classification
    Kaji, Tetsuya
    Rockova, Veronika
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2533 - 2547
  • [8] Kernel Adaptive Metropolis-Hastings
    Sejdinovic, Dino
    Strathmann, Heiko
    Garcia, Maria Lomeli
    Andrieu, Christophe
    Gretton, Arthur
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1665 - 1673
  • [9] On adaptive Metropolis-Hastings methods
    Griffin, Jim E.
    Walker, Stephen G.
    STATISTICS AND COMPUTING, 2013, 23 (01) : 123 - 134
  • [10] A history of the Metropolis-Hastings algorithm
    Hitchcock, DB
    AMERICAN STATISTICIAN, 2003, 57 (04): : 254 - 257