Rational points with large denominator on Erdos-Selfridge superelliptic curves

被引:1
作者
Saradha, N. [1 ,2 ]
机构
[1] Univ Mumbai, DAE Ctr Excellence Basic Sci, Mumbai 400098, Maharashtra, India
[2] B-706,Everard Towers,Eastern Express Highway, Mumbai 400022, Maharashtra, India
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2021年 / 99卷 / 3-4期
关键词
superelliptic curves; rational solutions; exponential Diophantine equations; perfect powers in arithmetic progression; PERFECT POWERS; CONSECUTIVE TERMS; PRODUCTS; VARIANTS;
D O I
10.5486/PMD.2021.8860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2016, Bennett and Siksek showed that if the Erdos-Selfridge curve (x + 1) ... (x + k) = y(l), k >= 3, l prime, has a rational solution in x and y, then l <= e(3k). In this paper, we show that if there exists a positive rational solution on the above curve, then either the denominator of the solution is large or l <= k.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1990, GREATEST PRIME FACTO
[2]   Powers from products of consecutive terms in arithmetic progression [J].
Bennett, MA ;
Bruin, N ;
Gyory, K ;
Hajdu, L .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 :273-306
[3]   Rational points on Erdos-Selfridge superelliptic curves [J].
Bennett, Michael A. ;
Siksek, Samir .
COMPOSITIO MATHEMATICA, 2016, 152 (11) :2249-2254
[4]   VARIANTS OF ERDOS-SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS [J].
Das, Pranabesh ;
Laishram, Shanta ;
Saradha, N. .
MATHEMATIKA, 2018, 64 (02) :380-386
[5]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[6]   On the diophantine equation n(n+d)... (n+(k-1)d)=byl [J].
Gyóry, K ;
Hajdu, L ;
Saradha, N .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (03) :373-388
[7]   Perfect powers from products of consecutive terms in arithmetic progression [J].
Gyory, K. ;
Hajdu, L. ;
Pinter, A. .
COMPOSITIO MATHEMATICA, 2009, 145 (04) :845-864
[8]   Arithmetic progressions with common difference divisible by small primes [J].
Saradha, N. ;
Tijdeman, R. .
ACTA ARITHMETICA, 2008, 131 (03) :267-279
[9]   More variants of Erds-selfridge superelliptic curves and their rational points [J].
Saradha, N. .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02) :333-342
[10]   Contributions towards a conjecture of Erdos on perfect powers in arithmetic progression [J].
Saradha, N ;
Shorey, TN .
COMPOSITIO MATHEMATICA, 2005, 141 (03) :541-560