Room temperature "optical nanodiamond hyperpolarizer": Physics, design, and operation

被引:26
作者
Ajoy, A. [1 ,2 ]
Nazaryan, R. [1 ,2 ]
Druga, E. [1 ,2 ]
Liu, K. [1 ,2 ]
Aguilar, A. [1 ,2 ]
Han, B. [1 ,2 ]
Gierth, M. [1 ,2 ]
Oon, J. T. [1 ,2 ]
Safvati, B. [1 ,2 ]
Tsang, R. [1 ,2 ]
Walton, J. H. [3 ]
Suter, D. [4 ]
Meriles, C. A. [5 ,6 ]
Reimer, J. A. [7 ,8 ]
Pines, A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Davis, Nucl Magnet Resonance Facil, Davis, CA 95616 USA
[4] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany
[5] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[6] CUNY City Coll, CUNY Grad Ctr, New York, NY 10031 USA
[7] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[8] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
DYNAMIC NUCLEAR-POLARIZATION; SOLID-STATE; DIAMOND; NMR;
D O I
10.1063/1.5131655
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in nuclear magnetic resonance (NMR) and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical DNP methods require the use of cryogens, large magnetic fields, and high power microwave excitation, which are expensive and unwieldy. Nanodiamond particles, rich in Nitrogen-Vacancy (NV) centers, have attracted attention as alternative DNP agents because they can potentially be optically hyperpolarized at room temperature. Here, unraveling new physics underlying an optical DNP mechanism first introduced by Ajoy et al. [Sci. Adv. 4, eaar5492 (2018)], we report the realization of a miniature "optical nanodiamond hyperpolarizer," where C-13 nuclei within the diamond particles are hyperpolarized via the NV centers. The device occupies a compact footprint and operates at room temperature. Instrumental requirements are very modest: low polarizing fields, low optical and microwave irradiation powers, and convenient frequency ranges that enable miniaturization. We obtain the best reported optical C-13 hyperpolarization in diamond particles exceeding 720 times of the thermal 7 T value (0.86% bulk polarization), corresponding to a ten-million-fold gain in averaging time to detect them by NMR. In addition, the hyperpolarization signal can be background-suppressed by over two-orders of magnitude, retained for multiple-minute long periods at low fields, and deployed efficiently even to C-13 enriched particles. Besides applications in quantum sensing and bright-contrast MRI imaging, this work opens possibilities for low-cost room-temperature DNP platforms that relay the C-13 polarization to liquids in contact with the high surface-area particles. Published under license by AIP Publishing.
引用
收藏
页数:13
相关论文
共 46 条
  • [1] PRINCIPLES OF DYNAMIC NUCLEAR-POLARIZATION
    ABRAGAM, A
    GOLDMAN, M
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (03) : 395 - 467
  • [2] Dynamic Nuclear Spin Polarization of Liquids and Gases in Contact with Nanostructured Diamond
    Abrams, Daniel
    Trusheim, Matthew E.
    Englund, Dirk R.
    Shattuck, Mark D.
    Meriles, Carlos A.
    [J]. NANO LETTERS, 2014, 14 (05) : 2471 - 2478
  • [3] Hyperpolarized relaxometry based nuclear T1 noise spectroscopy in diamond
    Ajoy, A.
    Safvati, B.
    Nazaryan, R.
    Oon, J. T.
    Han, B.
    Raghavan, P.
    Nirodi, R.
    Aguilar, A.
    Liu, K.
    Cai, X.
    Lv, X.
    Druga, E.
    Ramanathan, C.
    Reimer, J. A.
    Meriles, C. A.
    Suter, D.
    Pines, A.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Wide dynamic range magnetic field cycler: Harnessing quantum control at low and high fields
    Ajoy, A.
    Lv, X.
    Druga, E.
    Liu, K.
    Safvati, B.
    Morabe, A.
    Fenton, M.
    Nazaryan, R.
    Patel, S.
    Sjolander, T. F.
    Reimer, J. A.
    Sakellariou, D.
    Meriles, C. A.
    Pines, A.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (01)
  • [5] Enhanced dynamic nuclear polarization via swept microwave frequency combs
    Ajoy, A.
    Nazaryan, R.
    Liu, K.
    Lv, X.
    Safvati, B.
    Wang, G.
    Druga, E.
    Reimer, A.
    Suter, D.
    Ramanathan, C.
    Meriles, C. A.
    Pines, A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (42) : 10576 - 10581
  • [6] Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond
    Ajoy, Ashok
    Liu, Kristina
    Nazaryan, Raffi
    Lv, Xudong
    Zangara, Pablo R.
    Safvati, Benjamin
    Wang, Guoqing
    Arnold, Daniel
    Li, Grace
    Lin, Arthur
    Raghavan, Priyanka
    Druga, Emanuel
    Dhomkar, Siddharth
    Pagliero, Daniela
    Reimer, Jeffrey A.
    Suter, Dieter
    Meriles, Carlos A.
    Pines, Alexander
    [J]. SCIENCE ADVANCES, 2018, 4 (05):
  • [7] Stable three-axis nuclear-spin gyroscope in diamond
    Ajoy, Ashok
    Cappellaro, Paola
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [8] [Anonymous], 1990, Principles of Nuclear Magnetic Resonance in One and Two Dimensions
  • [9] [Anonymous], 1970, Spin Temperature and NMR in Solids
  • [10] Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy
    Ardenkjaer-Larsen, Jan-Henrik
    Boebinger, Gregory S.
    Comment, Arnaud
    Duckett, Simon
    Edison, Arthur S.
    Engelke, Frank
    Griesinger, Christian
    Griffin, Robert G.
    Hilty, Christian
    Maeda, Hidaeki
    Parigi, Giacomo
    Prisner, Thomas
    Ravera, Enrico
    van Bentum, Jan
    Vega, Shimon
    Webb, Andrew
    Luchinat, Claudio
    Schwalbe, Harald
    Frydman, Lucio
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (32) : 9162 - 9185