Twisted Burnside-Frobenius theory for discrete groups

被引:35
作者
Fel'shtyn, Alexander [1 ,2 ]
Troitsky, Evgenij [3 ]
机构
[1] Univ Szczecinski, Inst Matemat, PL-70451 Szczecin, Poland
[2] Boise State Univ, Dept Math, Boise, ID 83725 USA
[3] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119992, Russia
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2007年 / 613卷
关键词
D O I
10.1515/CRELLE.2007.097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a wide class of groups including polycyclic and finitely generated polynomial growth groups it is proved that the Reidemeister number of an automorphism phi is equal to the number of finite-dimensional fixed points of the induced map (phi) over cap on the unitary dual, if one of these numbers is finite. This theorem is a natural generalization of the classical Burnside-Frobenius theorem to infinite groups. This theorem also has important consequences in topological dynamics and in some sense is a reply to a remark of J.-P. Serre. The main technical results proved in the paper yield a tool for a further progress.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 45 条
[1]  
ARTHUR J, 1989, SIMPLE ALGEBRAS BASE
[2]  
CHARLES W, 1962, PURE APPL MATH, V11
[3]  
DEREK JSR, 1996, GRAD TEXTS MATH, V80
[4]  
DEREK JSR, 1972, ERGEBN MATH GRENZG 1, V62
[5]  
Dixmier J., 1982, C*-algebras
[6]  
Fel'shtyn A, 2006, ALGEBRA DISCRET MATH, P36
[7]  
Fel'shtyn A, 2006, MATH RES LETT, V13, P719
[8]   Reidemeister numbers of equivariant maps [J].
Felshtyn, A ;
Hill, R ;
Wong, P .
TOPOLOGY AND ITS APPLICATIONS, 1995, 67 (02) :119-131
[9]  
FELSHTYN A, ARXIVMATHGR0606725
[10]  
FELSHTYN A, 1999, POLISH ACAD SCI, P77