Rapid mixing and stability of quantum dissipative systems

被引:17
作者
Lucia, Angelo [1 ]
Cubitt, Toby S. [2 ]
Michalakis, Spyridon [3 ]
Perez-Garcia, David [1 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
[2] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
关键词
TRAPPED IONS; COMPUTATION; ENTANGLEMENT; SIMULATIONS; DYNAMICS; ANYONS; MEMORY;
D O I
10.1103/PhysRevA.91.040302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The physics of many materials is modeled by quantum many-body systems with local interactions. If the model of the system is sensitive to noise from the environment, or small perturbations to the original interactions, it will not properly model the robustness of the real physical system it aims to describe, or be useful when engineering novel systems for quantum information processing. We show that local observables and correlation functions of local Liouvillians are stable to local perturbations if the dynamics is rapidly mixing and has a unique fixed point. No other condition is required.
引用
收藏
页数:5
相关论文
共 31 条
  • [1] Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
  • [2] Barreiro JT, 2010, NAT PHYS, V6, P943, DOI [10.1038/nphys1781, 10.1038/NPHYS1781]
  • [3] Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
  • [4] Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
  • [5] Topological quantum order: Stability under local perturbations
    Bravyi, Sergey
    Hastings, Matthew B.
    Michalakis, Spyridon
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [6] Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/nphys1157, 10.1038/NPHYS1157]
  • [7] Cubitt T. S., COMMUN MATH IN PRESS
  • [8] Topological quantum memory
    Dennis, E
    Kitaev, A
    Landahl, A
    Preskill, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) : 4452 - 4505
  • [9] Colloquium: Quantum networks with trapped ions
    Duan, L. -M.
    Monroe, C.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (02) : 1209 - 1224
  • [10] A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem
    Farhi, E
    Goldstone, J
    Gutmann, S
    Lapan, J
    Lundgren, A
    Preda, D
    [J]. SCIENCE, 2001, 292 (5516) : 472 - 476