Some Fractional Dynamic Inequalities of Hardy's Type via Conformable Calculus

被引:23
作者
Saker, Samir [1 ]
Kenawy, Mohammed [2 ]
AlNemer, Ghada [3 ]
Zakarya, Mohammed [4 ,5 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum 63514, Egypt
[3] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 105862, Riyadh 11656, Saudi Arabia
[4] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[5] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
关键词
fractional hardy's inequality; fractional bennett's inequality; fractional copson's inequality; fractional leindler's inequality; timescales; conformable fractional calculus; fractional holder inequality; 26A15; 26D10; 26D15; 39A13; 34A40; 34N05;
D O I
10.3390/math8030434
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove some new fractional dynamic inequalities on time scales via conformable calculus. By using chain rule and Holder's inequality on timescales we establish the main results. When <mml:semantics>alpha =1</mml:semantics> we obtain some well-known time-scale inequalities due to Hardy, Copson, Bennett and Leindler inequalities.
引用
收藏
页数:15
相关论文
共 33 条
  • [1] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [2] Agarwal R.P., 2016, HARDY TYPE INEQAUALI
  • [3] SOME DYNAMIC WIRTINGER-TYPE INEQUALITIES AND THEIR APPLICATIONS
    Agarwal, Ravi P.
    Bohner, Martin
    O'Regan, Donal
    Saker, Samir H.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) : 1 - 18
  • [4] Akkurt A., 2016, RGMIA RES REP COLLEC, V19, P107
  • [5] A conformable fractional calculus on arbitrary time scales
    Benkhettou, Nadia
    Hassani, Salima
    Torres, Delfim F. M.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 93 - 98
  • [6] SOME ELEMENTARY INEQUALITIES
    BENNETT, G
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (152) : 401 - 425
  • [7] The best constant in a fractional Hardy inequality
    Bogdan, Krzysztof
    Dyda, Bartlomiej
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 629 - 638
  • [8] Bohner M., 2001, Dynamic Equations on Time Scales, An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
  • [9] Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
  • [10] Inequalities for α-fractional differentiable functions
    Chu, Yu-Ming
    Khan, Muhammad Adil
    Ali, Tahir
    Dragomir, Sever Silvestru
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,