Bimetric Theory of Fractional Quantum Hall States

被引:87
|
作者
Gromov, Andrey [1 ]
Son, Dam Thanh [1 ]
机构
[1] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 04期
基金
美国国家科学基金会;
关键词
EXCITATIONS; SYMMETRY; ALGEBRA; FLUID;
D O I
10.1103/PhysRevX.7.041032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chem-Simons action, coupled to a symmetric rank-2 tensor, and an action a la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k(6) order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH obscrvablcs acquire a curious geometric interpretation within the bimetric formalism.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Geometric quench and nonequilibrium dynamics of fractional quantum Hall states
    Liu, Zhao
    Gromov, Andrey
    Papic, Zlatko
    PHYSICAL REVIEW B, 2018, 98 (15)
  • [32] A numerical study of bounds in the correlations of fractional quantum Hall states
    Kumar, Prashant
    Haldane, Frederick Duncan Michael
    SCIPOST PHYSICS, 2024, 16 (05):
  • [33] Fractional Quantum Hall States of the A Phase in the Second Landau Level
    Das, Sudipto
    Das, Sahana
    Mandal, Sudhansu S.
    PHYSICAL REVIEW LETTERS, 2024, 132 (10)
  • [34] Very-High-Energy Collective States of Partons in Fractional Quantum Hall Liquids
    Balram, Ajit C.
    Liu, Zhao
    Gromov, Andrey
    Papic, Zlatko
    PHYSICAL REVIEW X, 2022, 12 (02):
  • [35] Model Wave Functions for the Collective Modes and the Magnetoroton Theory of the Fractional Quantum Hall Effect
    Yang, Bo
    Hu, Zi-Xiang
    Papic, Z.
    Haldane, F. D. M.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [36] Composite fermion model for entanglement spectrum of fractional quantum Hall states
    Davenport, Simon C.
    Rodriguez, Ivan D.
    Slingerland, J. K.
    Simon, Steven H.
    PHYSICAL REVIEW B, 2015, 92 (11):
  • [37] Fractional Quantum Hall States in Bilayer Graphene Probed by Transconductance Fluctuations
    Kim, Youngwook
    Lee, Dong Su
    Jung, Suyong
    Skakalova, Viera
    Taniguchi, T.
    Watanabe, K.
    Kim, Jun Sung
    Smet, Jurgen H.
    NANO LETTERS, 2015, 15 (11) : 7445 - 7451
  • [38] Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States
    Bernevig, B. Andrei
    Regnault, N.
    PHYSICAL REVIEW LETTERS, 2009, 103 (20)
  • [39] Disentangling Entanglement Spectra of Fractional Quantum Hall States on Torus Geometries
    Laeuchli, Andreas M.
    Bergholtz, Emil J.
    Suorsa, Juha
    Haque, Masudul
    PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [40] Edge properties of principal fractional quantum Hall states in the cylinder geometry
    Soule, Paul
    Jolicoeur, Thierry
    PHYSICAL REVIEW B, 2012, 86 (11)