共 47 条
Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases
被引:368
作者:
Barbatti, Mario
[1
,2
]
Aquino, Adelia J. A.
[1
]
Szymczak, Jaroslaw J.
[1
]
Nachtigallova, Dana
[3
]
Hobza, Pavel
[3
]
Lischka, Hans
[1
,3
]
机构:
[1] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
[2] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[3] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CS-16610 Prague 6, Czech Republic
来源:
基金:
奥地利科学基金会;
关键词:
photodynamical simulation;
photostability;
ultrafast photodeactivation;
nonadiabatic interactions;
ab initio multireference methods;
EXCITED-STATE DYNAMICS;
RESOLVED PHOTOELECTRON-SPECTROSCOPY;
ULTRAFAST INTERNAL-CONVERSION;
A-T DNA;
CONICAL INTERSECTIONS;
NONADIABATIC PHOTODYNAMICS;
PYRIMIDINE NUCLEOBASES;
RADIATIONLESS DECAY;
MOLECULAR-DYNAMICS;
SINGLET-STATES;
D O I:
10.1073/pnas.1014982107
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
A comprehensive effort in photodynamical ab initio simulations of the ultrafast deactivation pathways for all five nucleobases adenine, guanine, cytosine, thymine, and uracil is reported. These simulations are based on a complete nonadiabatic surface-hopping approach using extended multiconfigurational wave functions. Even though all five nucleobases share the basic internal conversion mechanisms, the calculations show a distinct grouping into purine and pyrimidine bases as concerns the complexity of the photodynamics. The purine bases adenine and guanine represent the most simple photodeactivation mechanism with the dynamics leading along a diabatic pi pi* path directly and without barrier to the conical intersection seam with the ground state. In the case of the pyrimidine bases, the dynamics starts off in much flatter regions of the pi pi* energy surface due to coupling of several states. This fact prohibits a clear formation of a single reaction path. Thus, the photodynamics of the pyrimidine bases is much richer and includes also n pi* states with varying importance, depending on the actual nucleobase considered. Trapping in local minima may occur and, therefore, the deactivation time to the ground state is also much longer in these cases. Implications of these findings are discussed (i) for identifying structural possibilities where singlet/triplet transitions can occur because of sufficient retention time during the singlet dynamics and (ii) concerning the flexibility of finding other deactivation pathways in substituted pyrimidines serving as candidates for alternative nucleobases.
引用
收藏
页码:21453 / 21458
页数:6
相关论文