Support vector machine-based active fault-tolerant control for wind turbine

被引:0
作者
El Bakri, Ayoub [1 ]
Boumhidi, Jaouad [2 ]
Boumhidi, Ismail [1 ]
机构
[1] Univ Sidi Mohammed ben Abdellah, Dept Phys, LESSI Lab, Fac Sci Dhar Mehraz, BP 1796, Fez Atlas 30003, Morocco
[2] Univ Sidi Mohamed Ben Abdellah, Fac Sci Dhar El Mahraz, LIIAN Lab, Box 30003, Fes, Morocco
来源
2019 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS 2019) | 2019年
关键词
Fault estimation; fault tolerant control; support vector machine; Unknown input observer; wind turbine; PITCH CONTROL; SYSTEM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an active fault-tolerant control method (FTC) for compensating pitch actuator faults in the hydraulic pitch system of variable speed wind turbine (WT). The proposed control strategy incorporates an unknown input observer (UIO) to estimate the state of the hydraulic pitch system, a support vector machine (SVM) based fault estimation block to provide active information on the state of the actuator fault, and an SVM-based reconfigurable controller to compensate for pitch actuator faults in order to recover the pitch dynamics. the effectiveness of the considered methods is validated using 4.8MW wind turbine.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Model-Based Fault-Tolerant Pitch Control of an Offshore Wind Turbine [J].
Badihi, Hamed ;
Zhang, Youmin ;
Rakheja, Subhash ;
Pillay, Pragasen .
IFAC PAPERSONLINE, 2018, 51 (18) :221-226
[2]   Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines [J].
Cho, Seongpil ;
Gao, Zhen ;
Moan, Torgeir .
RENEWABLE ENERGY, 2018, 120 :306-321
[3]   Fault-tolerant sensorless control of wind turbines achieving efficiency maximization in the presence of electrical faults [J].
Corradini, M. L. ;
Ippoliti, G. ;
Orlando, G. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (05) :2266-2282
[4]   Assessment and control of wind turbine by support vector machines [J].
Dahhani, Omar ;
El-Jouni, Abdeslam ;
Boumhidi, Ismail .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2018, 27 :167-179
[5]   Condition monitoring of wind turbine blades and tower via an automated laser scanning system [J].
Dilek, Ahmet U. ;
Oguz, Ali D. ;
Satis, Furkan ;
Gokdel, Yigit D. ;
Ozbek, Muammer .
ENGINEERING STRUCTURES, 2019, 189 :25-34
[6]   Condition monitoring of wind turbines: Techniques and methods [J].
Garcia Marquez, Fausto Pedro ;
Mark Tobias, Andrew ;
Pinar Perez, Jesus Maria ;
Papaelias, Mayorkinos .
RENEWABLE ENERGY, 2012, 46 :169-178
[7]   Observer-based Fault-Tolerant Control of DC-AC Converters in Wind Turbines for Ancillary Service [J].
Goldschmidt, Nico ;
Schulte, Horst .
IFAC PAPERSONLINE, 2018, 51 (24) :1149-1156
[8]   Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers [J].
Jiang, B ;
Staroswiecki, M ;
Cocquempot, V .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2004, 151 (01) :29-37
[9]   Robust Fuzzy Fault-Tolerant Control of Wind Energy Conversion Systems Subject to Sensor Faults [J].
Kamal, Elkhatib ;
Aitouche, Abdelouahab ;
Ghorbani, Reza ;
Bayart, Mireille .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2012, 3 (02) :231-241
[10]   Wind speed prediction using reduced support vector machines with feature selection [J].
Kong, Xiaobing ;
Liu, Xiangjie ;
Shi, Ruifeng ;
Lee, Kwang Y. .
NEUROCOMPUTING, 2015, 169 :449-456