A minimum-time obstacle-avoidance path planning algorithm for unmanned aerial vehicles

被引:12
作者
De Marinis, Arturo [1 ]
Iavernaro, Felice [1 ]
Mazzia, Francesca [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, Bari, Italy
[2] Univ Bari, Dipartimento Informat, Bari, Italy
关键词
Path planning; Minimum-time trajectory; Obstacle avoidance; Pontryagin minimum principle; Continuation technique; UAV; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1007/s11075-021-01167-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present a new strategy to determine an unmanned aerial vehicle trajectory that minimizes its flight time in presence of avoidance areas and obstacles. The method combines classical results from optimal control theory, i.e. the Euler-Lagrange Theorem and the Pontryagin Minimum Principle, with a continuation technique that dynamically adapts the solution curve to the presence of obstacles. We initially consider the two-dimensional path planning problem and then move to the three-dimensional one, and include numerical illustrations for both cases to show the efficiency of our approach.
引用
收藏
页码:1639 / 1661
页数:23
相关论文
共 36 条
[1]   Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges [J].
Aggarwal, Shubhani ;
Kumar, Neeraj .
COMPUTER COMMUNICATIONS, 2020, 149 :270-299
[2]   Symmetric boundary value methods for second order initial and boundary value problems [J].
Amodio, Pierluigi ;
Iavernaro, Felice .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (3-4) :383-398
[3]   Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics [J].
Amodio, Pierluigi ;
Brugnano, Luigi ;
Iavernaro, Felice .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (04) :881-905
[4]  
[Anonymous], 2017, P INT WORKSH REM SEN, DOI [DOI 10.1109/RSIP.2017.7958815, 10.1109/RSIP.2017.7958815]
[5]  
Bai WB, 2018, CHIN CONTR CONF, P6733, DOI 10.23919/ChiCC.2018.8483665
[6]   Notes on Numerical Methods for Solving Optimal Control Problems [J].
Biral, Francesco ;
Bertolazzi, Enrico ;
Bosetti, Paolo .
IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2016, 5 (02) :154-166
[7]  
Brugnano L, 2016, MONOGR RES NOTES MAT, V13, P1
[8]  
Budiyanto A, 2015, 2015 INTERNATIONAL CONFERENCE ON CONTROL, ELECTRONICS, RENEWABLE ENERGY AND COMMUNICATIONS (ICCEREC), P187, DOI 10.1109/ICCEREC.2015.7337041
[9]   On the development of effective algorithms for the numerical solution of singularly perturbed two-point boundary value problems [J].
Capper, Steven ;
Cash, Jeff ;
Mazzia, Francesca .
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (01) :42-57
[10]   Algorithm 927: The MATLAB Code bvptwp.m for the Numerical Solution of Two Point Boundary Value Problems [J].
Cash, J. R. ;
Hollevoet, D. ;
Mazzia, F. ;
Nagy, A. M. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02)