Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing

被引:13
|
作者
Wang, Zhuqing [1 ]
Ma, Qiqi [1 ]
Guo, Yangming [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
关键词
lithium-ion batteries (LIBs); remaining useful life (RUL); soft sensing; gated recurrent unit neural network (GRU NN); SHORT-TERM-MEMORY; HEALTH; STATE; OPTIMIZATION; PROGNOSTICS; MODEL;
D O I
10.3390/act10090234
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Remaining useful life (RUL) prediction is of great concern for the reliability and safety of lithium-ion batteries in electric vehicles (EVs), but the prediction precision is still unsatisfactory due to the unreliable measurement and fluctuation of data. Aiming to solve these issues, an adaptive sliding window-based gated recurrent unit neural network (GRU NN) is constructed in this paper to achieve the precise RUL prediction of LIBs with the soft sensing method. To evaluate the battery degradation performance, an indirect health indicator (HI), i.e., the constant current duration (CCD), is firstly extracted from charge voltage data, providing a reliable soft measurement of battery capacity. Then, a GRU NN with an adaptive sliding window is designed to learn the long-term dependencies and simultaneously fit the local regenerations and fluctuations. Employing the inherent memory units and gate mechanism of a GRU, the designed model can learn the long-term dependencies of HIs to the utmost with low computation cost. Furthermore, since the length of the sliding window updates timely according to the variation of HIs, the model can also capture the local tendency of HIs and address the influence of local regeneration. The effectiveness and advantages of the integrated prediction methodology are validated via experiments and comparison, and a more precise RUL prediction result is provided as well.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method
    Tong, Zheming
    Miao, Jiazhi
    Tong, Shuiguang
    Lu, Yingying
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [22] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194
  • [23] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Variational Mode Decomposition and Machine Learning Algorithm
    Sun, Chuang
    Qu, An
    Zhang, Jun
    Shi, Qiyang
    Jia, Zhenhong
    ENERGIES, 2023, 16 (01)
  • [24] Remaining useful life prediction of lithium-ion batteries based on performance degradation mechanism analysis and improved Deep Extreme Learning Machine model
    Feng, Renjun
    Wang, Shunli
    Yu, Chunmei
    Fernandez, Carlos
    IONICS, 2024, 30 (09) : 5845 - 5852
  • [25] Transfer Learning-Based Hybrid Remaining Useful Life Prediction for Lithium-Ion Batteries Under Different Stresses
    Pan, Dawei
    Li, Hengfeng
    Wang, Shaojun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [26] A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries
    Gao, Kaidi
    Xu, Jingyun
    Li, Zuxin
    Cai, Zhiduan
    Jiang, Dongming
    Zeng, Aigang
    ACS OMEGA, 2022, 7 (30): : 26701 - 26714
  • [27] AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries
    Chen, Daoquan
    Zhou, Xiuze
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [28] Comparing deep learning methods to predict the remaining useful life of lithium-ion batteries
    Zraibi, Brahim
    Mansouri, Mohamed
    Loukili, Salah Eddine
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 6298 - 6304
  • [29] An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles
    Li, Xiaoyu
    Shu, Xing
    Shen, Jiangwei
    Xiao, Renxin
    Yan, Wensheng
    Chen, Zheng
    ENERGIES, 2017, 10 (05)
  • [30] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315