Quasinormality and Numerical Ranges of Certain Classes of Dual Toeplitz Operators

被引:3
作者
Guediri, Hocine [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
D O I
10.1155/2010/426319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of dual Toeplitz operators was elaborated by Stroethoff and Zheng (2002), where various corresponding algebraic and spectral properties were established. In this paper, we characterize numerical ranges of certain classes of dual Toeplitz operators. Moreover, we introduce the analog of Halmos' fifth classification problem for quasinormal dual Toeplitz operators. In particular, we show that there are no quasinormal dual Toeplitz operators with bounded analytic or coanalytic symbols which are not normal.
引用
收藏
页数:14
相关论文
共 33 条
[1]   SUBNORMAL TOEPLITZ OPERATORS AND FUNCTIONS OF BOUNDED TYPE [J].
ABRAHAMSE, MB .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (03) :597-604
[2]   QUASINORMAL TOEPLITZ OPERATORS [J].
AMEMIYA, I ;
ITO, T ;
WONG, TK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) :254-258
[3]  
[Anonymous], REND CIRC MAT PALE 2
[4]  
[Anonymous], NIHONKAI MATH J
[5]   COMMUTING TOEPLITZ-OPERATORS WITH HARMONIC SYMBOLS [J].
AXLER, S ;
CUCKOVIC, Z .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (01) :1-12
[6]  
Brown A., 1964, J. Reine. Angew. Math, V213, P89
[7]  
[CHENG GuoZheng 程国正], 2008, [数学研究与评论, Journal of Mathematical Research and Exposition], V28, P366
[8]  
CHOE BR, 2001, FAR E J MATH SCI, P71
[9]   TOEPLITZ-OPERATORS AND K-SPECTRAL SETS [J].
CLARK, DN .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :127-141
[10]  
COWEN CC, 1984, J REINE ANGEW MATH, V351, P216