Edge Sparsification for Graphs via Meta-Learning

被引:1
作者
Wan, Guihong [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
来源
2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021) | 2021年
关键词
Graph Sparsification; Meta-Learning; Meta-Gradients; Node Classification; Graph Neural Network;
D O I
10.1109/ICDE51399.2021.00316
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel edge sparsification approach for semi-supervised learning on undirected and attributed graphs. The main challenge is to retain few edges while minimizing the loss of node classification accuracy. The task can be mathematically formulated as a bi-level optimization problem. We propose to use meta-gradients, which have traditionally been used in meta-learning, to solve the optimization problem, specifically, treating the graph adjacency matrix as hyperparameters to optimize. Experimental results show the effectiveness of the proposed approach. Remarkably, with the resulting sparse and light graph, in many cases the classification accuracy is significantly improved.
引用
收藏
页码:2733 / 2738
页数:6
相关论文
共 31 条
[1]   Gradient-based optimization of hyperparameters [J].
Bengio, Y .
NEURAL COMPUTATION, 2000, 12 (08) :1889-1900
[2]  
Chen Y., 2019, ARXIV191210730PHYSIC
[3]  
Fan Wenqi, 2020, IEEE T KNOWL DATA EN
[4]   Hierarchical graph attention networks for semi-supervised node classification [J].
Feng, Yixiong ;
Li, Kangjie ;
Gao, Yicong ;
Qiu, Jian .
APPLIED INTELLIGENCE, 2020, 50 (10) :3441-3451
[5]  
Finn C, 2017, PR MACH LEARN RES, V70
[6]   A GENERAL FRAMEWORK FOR GRAPH SPARSIFICATION [J].
Fung, Wai-Shing ;
Hariharan, Ramesh ;
Harvey, Nicholas J. A. ;
Panigrahi, Debmalya .
SIAM JOURNAL ON COMPUTING, 2019, 48 (04) :1196-1223
[7]  
Garcia V., 2017, ARXIV PREPRINT ARXIV
[8]   Structure-preserving sparsification methods for social networks [J].
Hamann, Michael ;
Lindner, Gerd ;
Meyerhenke, Henning ;
Staudt, Christian L. ;
Wagner, Dorothea .
SOCIAL NETWORK ANALYSIS AND MINING, 2016, 6 (01)
[9]  
Hamilton Will, 2017, ADV NEURAL INFORM PR, DOI DOI 10.48550/ARXIV.1706.02216
[10]   SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period [J].
Santerne, A. ;
Moutou, C. ;
Tsantaki, M. ;
Bouchy, F. ;
Hebrard, G. ;
Adibekyan, V. ;
Almenara, J. -M. ;
Amard, L. ;
Barros, S. C. C. ;
Boisse, I. ;
Bonomo, A. S. ;
Bruno, G. ;
Courcol, B. ;
Deleuil, M. ;
Demangeon, O. ;
Diaz, R. F. ;
Guillot, T. ;
Havel, M. ;
Montagnier, G. ;
Rajpurohit, A. S. ;
Rey, J. ;
Santos, N. C. .
ASTRONOMY & ASTROPHYSICS, 2016, 587