Real-Time Embedded Machine Learning for Tensorial Tactile Data Processing

被引:25
作者
Ibrahim, Ali [1 ]
Valle, Maurizio [1 ]
机构
[1] Univ Genoa, Dept Elect Elect & Telecommun Engn & Naval Archit, I-16145 Genoa, Italy
关键词
Embedded machine learning; real time processing; dedicated hardware implementation; tensorial kernel; tactile sensors; FPGA; SUPPORT VECTOR MACHINES; IMPLEMENTATION; ACCELERATOR; FRAMEWORK; ALGORITHM; SYSTEM;
D O I
10.1109/TCSI.2018.2852260
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning (ML) has increasingly been recently employed to provide solutions for difficult tasks, such as image and speech recognition, and tactile data processing achieving a near human decision accuracy. However, the efficient hardware implementation of ML algorithms in particular for real time applications is still a challenge. This paper presents the hardware architectures and implementation of a real time ML method based on tensorial kernel approach dealing with multidimensional input tensors. Two different hardware architectures are proposed and assessed. Results demonstrate the feasibility of the proposed implementations for real time classification. The proposed parallel architecture achieves a peak performance of 302 G-ops while consuming 1.14 W for the Virtex-7 XC7VX980T FPGA device overcoming state of the art solutions.
引用
收藏
页码:3897 / 3906
页数:10
相关论文
共 33 条
[1]   A digital architecture for support vector machines: Theory, algorithm, and FPGA implementation [J].
Anguita, D ;
Boni, A ;
Ridella, S .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (05) :993-1009
[2]  
[Anonymous], 2010, P 2010 4 INT C BIOIN, DOI [DOI 10.1109/ICBBE.2010.5517022, 10.1109/ICBBE.2010.5517022]
[3]   Decision Tree and Random Forest Implementations for Fast Filtering of Sensor Data [J].
Buschjaeger, Sebastian ;
Morik, Katharina .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (01) :209-222
[4]  
Chakrabartty S, 2010, IEEE INT SYMP CIRC S, P513, DOI 10.1109/ISCAS.2010.5537578
[5]   A parallel neural processor for real-time applications [J].
Danese, G ;
Leporati, F ;
Ramat, S .
IEEE MICRO, 2002, 22 (03) :20-31
[6]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[7]   Efficient Digital Implementation of Extreme Learning Machines for Classification [J].
Decherchi, Sergio ;
Gastaldo, Paolo ;
Leoncini, Alessio ;
Zunino, Rodolfo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (08) :496-500
[8]   Embedded Streaming Deep Neural Networks Accelerator With Applications [J].
Dundar, Aysegul ;
Jin, Jonghoon ;
Martini, Berin ;
Culurciello, Eugenio .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (07) :1572-1583
[9]   Distributed Sensing and Stimulation Systems for Sense of Touch Restoration in Prosthetics [J].
Fares, H. ;
Seminara, L. ;
Ibrahim, A. ;
Franceschi, M. ;
Pinna, L. ;
Valle, M. ;
Dosen, S. ;
Farina, D. .
2017 FIRST NEW GENERATION OF CAS (NGCAS), 2017, :177-180
[10]  
Franceschi M., 2016, 12 C PHD RES MICR EL, DOI [10.1109/PRIME.2016.7519546, DOI 10.1109/PRIME.2016.7519546]