A FULLY WELL-BALANCED LAGRANGE-PROJECTION-TYPE SCHEME FOR THE SHALLOW-WATER EQUATIONS

被引:17
作者
Castro Diaz, Manuel J. [1 ]
Chalons, Christophe [2 ]
Morales De Luna, Tomas [3 ]
机构
[1] Univ Malaga, Fac Ciencias, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Paris Saclay, UVSQ, CNRS, Lab Math Versailles, F-78035 Versailles, France
[3] Univ Cordoba, Dept Matemat, Campus Rabanales, E-14071 Cordoba, Spain
关键词
shallow water equations; finite volume method; Lagrange-projection scheme; DISCONTINUOUS GALERKIN METHODS; GAS-DYNAMICS EQUATIONS; LARGE TIME-STEP; GODUNOV-TYPE SCHEMES; VOLUME WENO SCHEMES; HYPERBOLIC SYSTEMS; CONSERVATION-LAWS; NUMERICAL-METHODS; RECONSTRUCTION;
D O I
10.1137/17M1156101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focuses on the numerical approximation of the shallow water equations using a Lagrange-projection-type approach. We propose a fully well-balanced explicit and positive scheme using relevant reconstruction operators. By fully well-balanced, it is meant that the scheme is able to preserve stationary smooth solutions of the model with nonzero velocity, including of course also the well-known lake at rest equilibrium. Numerous numerical experiments illustrate the good behavior of the scheme.
引用
收藏
页码:3071 / 3098
页数:28
相关论文
共 32 条
[1]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[2]   A SIMPLE WELL-BALANCED AND POSITIVE NUMERICAL SCHEME FOR THE SHALLOW-WATER SYSTEM [J].
Audusse, Emmanuel ;
Chalons, Christophe ;
Ung, Philippe .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) :1317-1332
[3]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[4]   Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations [J].
Berthon, C. ;
Chalons, C. ;
Cornet, S. ;
Sperone, G. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (01) :117-130
[5]   A FULLY WELL-BALANCED, POSITIVE AND ENTROPY-SATISFYING GODUNOV-TYPE METHOD FOR THE SHALLOW-WATER EQUATIONS [J].
Berthon, Christophe ;
Chalons, Christophe .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1281-1307
[6]   Efficient well-balanced hydrostatic upwind schemes for shallow-water equations [J].
Berthon, Christophe ;
Foucher, Francoise .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (15) :4993-5015
[7]   IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows [J].
Bispen, Georgij ;
Arun, K. R. ;
Lukacova-Medvid'ova, Maria ;
Noelle, Sebastian .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 16 (02) :307-347
[8]  
Bouchut F., 2004, FRONT MATH
[9]   A SUBSONIC-WELL-BALANCED RECONSTRUCTION SCHEME FOR SHALLOW WATER FLOWS [J].
Bouchut, Francois ;
Morales de Luna, Tomas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) :1733-1758
[10]   High order exactly well-balanced numerical methods for shallow water systems [J].
Castro Diaz, M. J. ;
Lopez-Garcia, J. A. ;
Pares, Carlos .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 246 :242-264