Real-time energy management optimization using model predictive control on a microgrid demonstrator

被引:5
作者
Jaboulay, Pierre-Armand [1 ]
Zhu, Wanshan [1 ]
Niu, Xinyan [2 ]
Pan, Xuyang [2 ]
Gao, Shiqiao [2 ]
机构
[1] Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China
[2] EDF China Holding, R&D Ctr, Elect Power Syst, Beijing, Peoples R China
来源
2017 FIRST IEEE INTERNATIONAL CONFERENCE ON ENERGY INTERNET (ICEI 2017) | 2017年
基金
中国国家自然科学基金;
关键词
microgrid; optimization; neural network; renewable power; distributed generation; model predictive control;
D O I
10.1109/ICEI.2017.47
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the implementation of a real-time control algorithm based on model predictive control and neural network load forecasting for microgrid optimization. At each stage, the algorithm updates the optimal trajectory for system state in order to minimize operations costs while ensuring instantaneous power balance and physical constraints respect. The proposed framework is implemented on a semi-physical demonstrator including residential load, electric vehicles, solar panels and battery storage to assess viability and optimality of control policies. In order to assess control efficiency and influence of economic parameters, several scenarios are run in parallel on the semi-physical platform. The robustness against forecast error of the proposed control architecture is confirmed through sensitivity analysis with various error distributions.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 11 条
[1]  
Ashutosh ND., 2015, IET C PUBLICATIONS, P459
[2]  
Lasseter B, 2001, 2001 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-3, P146, DOI 10.1109/PESW.2001.917020
[3]   Microgrids research: A review of experimental microgrids and test systems [J].
Lidula, N. W. A. ;
Rajapakse, A. D. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :186-202
[4]   Microgrid supervisory controllers and energy management systems: A literature review [J].
Meng, Lexuan ;
Sanseverino, Eleonora Riva ;
Luna, Adriana ;
Dragicevic, Tomislav ;
Vasquez, Juan C. ;
Guerrero, Josep M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 :1263-1273
[5]  
Merabet A., 2016, IEEE TRANSACTIONSON, P99
[6]  
Pan XY, 2015, IFAC PAPERSONLINE, V48, P306, DOI 10.1016/j.ifacol.2015.12.395
[7]  
Pan Xuyang, 2016 CHIN INT C EL D
[8]   Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study [J].
Parisio, Alessandra ;
Rikos, Evangelos ;
Glielmo, Luigi .
JOURNAL OF PROCESS CONTROL, 2016, 43 :24-37
[9]  
Patrao I., 2014, RENEW SUST ENERG REV, V43, P412
[10]   General aspects, hierarchical controls and droop methods in microgrids: A review [J].
Planas, Estefania ;
Gil-de-Muro, Asier ;
Andreu, Jon ;
Kortabarria, Inigo ;
Martinez de Alegria, Inigo .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 17 :147-159