CoP/N-Doped Carbon Nanowire Derived from Co-Based Coordination Polymer as Efficient Electrocatalyst toward Oxygen Evolution Reaction

被引:5
|
作者
Chen, Liang [1 ]
Xu, Guan Cheng [1 ]
Xu, Gui [1 ]
Zhang, Li [1 ]
机构
[1] Xinjiang Univ, Inst Appl Chem, Key Lab Adv Funct Mat, Key Lab Energy Mat Chem,Minist Educ, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
coordination polymers; CoP; electrocatalysts; N-doped carbon nanowires; oxygen evolution reactions; METAL-ORGANIC FRAMEWORK; POROUS CARBON; BIFUNCTIONAL ELECTROCATALYSTS; HIGH-PERFORMANCE; HYDROGEN; WATER; COBALT; REDUCTION; ENERGY; NANOFIBERS;
D O I
10.1002/ente.201901419
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of cheap, high-efficiency, and long-term durable oxygen evolution reaction (OER) electrocatalysts has become a research hotspot. Carbon-confined transition-metal phosphides derived from coordination polymers and metal-organic frameworks have received great attention. Herein, a CoP/N-doped carbon-400 (CoP/NC-400) nanowire is prepared using a coordination polymer [Co(C4H7NO4)]center dot xH(2)O (Co-Asp, Asp = l-aspartic acid) nanowire as the precursor and template through simultaneous pyrolysis and low-temperature phosphidation. Electrochemical tests indicate that the CoP/NC-400 nanowire displays better OER properties than CoP/NC-300/500 nanowires. The overpotential required to reach a current density of 10 mA cm(-2) is 320 mV with a minimum Tafel slope of 89 mV dec(-1). Moreover, at a higher current density, the OER performance of the CoP/NC-400 nanowire is superior to that of RuO2. The excellent electrochemical performance of the CoP/NC-400 nanowire is attributed to the high electrochemical surface area and the strong synergistic effect of the CoP nanoparticle and the N-doped carbon nanowire.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] CoFe-loaded P, N co-doped carbon foam derived from petroleum pitch waste: An efficient electrocatalyst for oxygen evolution reaction
    Gebreslase, Gebrehiwet Abrham
    Sebastian, David
    Martinez-Huerta, Maria Victoria
    Tsoncheva, Tanya
    Tsyntsarski, Boiko
    Georgiev, Georgi
    Lazaro, Maria Jesus
    CATALYSIS TODAY, 2023, 423
  • [42] Porphyrin coordination polymer/Co1-xS composite electrocatalyst for efficient oxygen evolution reaction
    Wang, Aijian
    Cheng, Laixiang
    Shen, Xiaoliang
    Chen, Xiaodong
    Zhu, Weihua
    Zhao, Wei
    Lv, Cuncai
    CHEMICAL ENGINEERING JOURNAL, 2020, 400 (400)
  • [43] Co nanoislands activated Co,N-doped porous carbon nanospheres for highly efficient and durable oxygen electrocatalyst
    Wu, Weicui
    Zong, Lingbo
    Chen, Xin
    Zhang, Wenjun
    Cui, Lixiu
    Yang, Yu
    Wang, Xia
    Li, ShaoXiang
    Wang, Lei
    APPLIED SURFACE SCIENCE, 2021, 541
  • [44] Facile Fabrication of N-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction Reaction
    Liao, Yongliang
    Gao, Yuan
    Zhu, Shenmin
    Zheng, Junsheng
    Chen, Zhixin
    Yin, Chao
    Lou, Xianghong
    Zhang, Di
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (35) : 19619 - 19625
  • [45] N-Doped Carbon Aerogel Derived from a Metal-Organic Framework Foam as an Efficient Electrocatalyst for Oxygen Reduction
    Yi, Jun-Dong
    Zhang, Meng-Di
    Hou, Ying
    Huang, Yuan-Biao
    Cao, Rong
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (20) : 3642 - 3647
  • [46] Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions
    Su, Yunhe
    Zhu, Yihua
    Jiang, Hongliang
    Shen, Jianhua
    Yang, Xiaoling
    Zou, Wenjian
    Chen, Jianding
    Li, Chunzhong
    NANOSCALE, 2014, 6 (24) : 15080 - 15089
  • [47] A facile synthesis of N-doped carbon encapsulated multimetallic carbonitride as a robust electrocatalyst for oxygen evolution reaction
    Cao, Xiaojuan
    Feng, Haozhou
    Yu, Lin
    Shi, Lei
    Yan, Ning
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 679 : 703 - 709
  • [48] ZnS, Fe, and P co-doped N enriched carbon derived from MOFs as efficient electrocatalyst for oxygen reduction reaction
    Zhao, Liping
    Wang, Anqi
    Yang, Ailin
    Zuo, Guihong
    Dai, Jun
    Zheng, Youjin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31863 - 31870
  • [49] N-doped carbon nanotube/particle composite as highly efficient electrocatalyst towards oxygen reduction reaction
    Lei, Yu
    Tang, Yibo
    Li, Guijun
    Chen, Changguo
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 157
  • [50] Fe-N Co-doped Porous Carbon Derived from Ionic Liquids as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Liu, Yong
    Li, Shenshen
    Li, Xiying
    Mao, Liqun
    Liu, Fujian
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (46) : 15638 - 15646