Simultaneously optimizing the independent thermoelectric properties in (Ti,Zr,Hf)(Co,Ni)Sb alloy by in situ forming InSb nanoinclusions

被引:100
作者
Xie, W. J. [1 ,2 ]
He, J. [2 ]
Zhu, S. [2 ]
Su, X. L. [1 ]
Wang, S. Y. [1 ]
Holgate, T. [2 ]
Graff, J. W. [2 ]
Ponnambalam, V. [2 ]
Poon, S. J. [3 ]
Tang, X. F. [1 ]
Zhang, Q. J. [1 ]
Tritt, T. M. [2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[3] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
关键词
Thermoelectric properties; In situ nanostructure; Half-Heusler compound; Electron-injection; Electron-filtering; TRANSPORT-PROPERTIES; SEEBECK COEFFICIENT; FIGURE; SCATTERING; APPARATUS; ELECTRON; POWER;
D O I
10.1016/j.actamat.2010.05.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report an induction-melting spark-plasma-sintering synthesis process of the nanocomposite material composed of (TiZrHf)(CoNi)Sb coarse grains and in situ formed InSb nanoinclusions that occur primarily on the grain boundaries. We were able to qualitatively control the amount of InSb nanoinclusions by varying the In and Sb contents in the starting materials. The effects of the nanoinclusion formation and the matrix-nanoinclusion boundaries on the thermoelectric properties have been studied and correlated. In particular, the nanoinclusion-induced electron injection and electron filtering mechanisms helped to simultaneously decrease the resistivity, enhance the Seebeck coefficient and reduce the thermal conductivity of the nanocomposite. A figure of merit of ZT similar to 0.5 was attained at 820 K for the sample containing 1 at.% InSb nanoinclusions, which is a 160% improvement over the sample containing no nanoinclusions. The experimental results are discussed in the context of the effective medium model formerly proposed by Bergman and Fel. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4705 / 4713
页数:9
相关论文
共 41 条
[1]   Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m [J].
Androulakis, John ;
Hsu, Kuei Fang ;
Pcionek, Robert ;
Kong, Huijun ;
Uher, Ctirad ;
DAngelo, Jonathan J. ;
Downey, Adam ;
Hogan, Tim ;
Kanatzidis, Mercouri G. .
ADVANCED MATERIALS, 2006, 18 (09) :1170-+
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Enhancement of thermoelectric power factor in composite thermoelectrics [J].
Bergman, DJ ;
Fel, LG .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (12) :8205-8216
[4]   THERMOELECTRIC PROPERTIES OF A COMPOSITE MEDIUM [J].
BERGMAN, DJ ;
LEVY, O .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (11) :6821-6833
[5]   Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys [J].
Bhattacharya, S. ;
Skove, M. J. ;
Russell, M. ;
Tritt, T. M. ;
Xia, Y. ;
Ponnambalam, V. ;
Poon, S. J. ;
Thadhani, N. .
PHYSICAL REVIEW B, 2008, 77 (18)
[6]   Preparation and transport properties of polycrystalline Bi and Bi-SiO2 nanocomposites [J].
Brochin, F ;
Lenoir, B ;
Devaux, X ;
Martin-Lopez, R ;
Scherrer, H .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) :3269-3275
[7]  
BYTENSKII LI, 1977, SOV PHYS SEMICOND+, V11, P894
[8]   Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure [J].
Cao, Y. Q. ;
Zhao, X. B. ;
Zhu, T. J. ;
Zhang, X. B. ;
Tu, J. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (14)
[9]   Recent developments in thermoelectric materials [J].
Chen, G ;
Dresselhaus, MS ;
Dresselhaus, G ;
Fleurial, JP ;
Caillat, T .
INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (01) :45-66
[10]   The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions [J].
Chen, LD ;
Huang, XY ;
Zhou, M ;
Shi, X ;
Zhang, WB .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (06)