Transient and stabilized complexes of Nsp7, Nsp8, and Nsp12 in SARS-CoV-2 replication

被引:35
|
作者
Wilamowski, Mateusz [1 ,2 ]
Hammel, Michal [3 ]
Leite, Wellington [4 ]
Zhang, Qiu [4 ]
Kim, Youngchang [1 ,5 ]
Weiss, Kevin L. [4 ]
Jedrzejczak, Robert [1 ,5 ]
Rosenberg, Daniel J. [3 ,6 ]
Fan, Yichong [4 ]
Wower, Jacek [7 ]
Bierma, Jan C. [3 ]
Sarker, Altaf H. [3 ]
Tsutakawa, Susan E. [3 ]
Pingali, Sai Venkatesh [4 ]
O'Neill, Hugh M. [4 ]
Joachimiak, Andrzej [1 ,2 ,5 ]
Hura, Greg L. [3 ,8 ]
机构
[1] Univ Chicago, Ctr Struct Genom Infect Dis, Consortium Adv Sci & Engn, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA
[3] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
[4] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Neutron Scattering Div, Oak Ridge, TN 37830 USA
[5] Argonne Natl Lab, Struct Biol Ctr, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[6] Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA
[7] Auburn Univ, Dept Anim Sci, Auburn, AL 36849 USA
[8] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
基金
美国国家卫生研究院; 美国食品与农业研究所;
关键词
ANGLE X-RAY; RNA-POLYMERASE; NEUTRON-SCATTERING; CONTRAST VARIATION; DATA REDUCTION; PROTEINS; SAXS; TRANSCRIPTION; ELECTROSTATICS; COMPUTATION;
D O I
10.1016/j.bpj.2021.06.006
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The replication transcription complex (RTC) from the virus SARS-CoV-2 is responsible for recognizing and processing RNA for two principal purposes. The RTC copies viral RNA for propagation into new virus and for ribosomal transcription of viral proteins. To accomplish these activities, the RTC mechanism must also conform to a large number of imperatives, including RNA over DNA base recognition, basepairing, distinguishing viral and host RNA, production of mRNA that conforms to host ribosome conventions, interfacing with error checking machinery, and evading host immune responses. In addition, the RTC will discontinuously transcribe specific sections of viral RNA to amplify certain proteins over others. Central to SARS-CoV-2 viability, the RTC is therefore dynamic and sophisticated. We have conducted a systematic structural investigation of three components that make up the RTC: Nsp7, Nsp8, and Nsp12 (also known as RNA-dependent RNA polymerase). We have solved high-resolution crystal structures of the Nsp7/8 complex, providing insight into the interaction between the proteins. We have used small-angle x-ray and neutron solution scattering (SAXS and SANS) on each component individually as pairs and higher-order complexes and with and without RNA. Using size exclusion chromatography and multiangle light scatteringcoupled SAXS, we defined which combination of components forms transient or stable complexes. We used contrast-matching to mask specific complex-forming components to test whether components change conformation upon complexation. Altogether, we find that individual Nsp7, Nsp8, and Nsp12 structures vary based on whether other proteins in their complex are present. Combining our crystal structure, atomic coordinates reported elsewhere, SAXS, SANS, and other biophysical techniques, we provide greater insight into the RTC assembly, mechanism, and potential avenues for disruption of the complex and its functions.
引用
收藏
页码:3152 / 3165
页数:14
相关论文
共 40 条
  • [31] Arterivirus nsp12 versus the coronavirus nsp16 2′-O-methyltransferase: comparison of the C-terminal cleavage products of two nidovirus pp1ab polyproteins
    Lehmann, Kathleen C.
    Hooghiemstra, Lisa
    Gulyaeva, Anastasia
    Samborskiy, Dmitry V.
    Zevenhoven-Dobbe, Jessika C.
    Snijder, Eric J.
    Gorbalenya, Alexander E.
    Posthuma, Clara C.
    JOURNAL OF GENERAL VIROLOGY, 2015, 96 : 2643 - 2655
  • [32] SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease
    Salgueiro, Bruno A.
    Saramago, Margarida
    Tully, Mark D.
    Issoglio, Federico
    Silva, Sara T. N.
    Paiva, Ana C. F.
    Arraiano, Cecilia M.
    Matias, Pedro M.
    Matos, Rute G.
    Moe, Elin
    Romao, Celia V.
    BIOMETALS, 2024, 37 (05) : 1127 - 1146
  • [33] Nsp14 of SARS-CoV-2 inhibits mRNA processing and nuclear export by targeting the nuclear cap-binding complex
    Katahira, Jun
    Ohmae, Tatsuya
    Yasugi, Mayo
    Sasaki, Ryosuke
    Itoh, Yumi
    Kohda, Tomoko
    Hieda, Miki
    Hirai, Masami Yokota
    Okamoto, Toru
    Miyamoto, Yoichi
    NUCLEIC ACIDS RESEARCH, 2023, 51 (14) : 7602 - 7618
  • [34] SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction
    Lavigne, Marc
    Helynck, Olivier
    Rigolet, Pascal
    Boudria-Souilah, Rofia
    Nowakowski, Mireille
    Baron, Bruno
    Brule, Sebastien
    Hoos, Sylviane
    Raynal, Bertrand
    Guittat, Lionel
    Beauvineau, Claire
    Petres, Stephane
    Granzhan, Anton
    Guillon, Jean
    Pratviel, Genevieve
    Teulade-Fichou, Marie-Paule
    England, Patrick
    Mergny, Jean-Louis
    Munier-Lehmann, Helene
    NUCLEIC ACIDS RESEARCH, 2021, 49 (13) : 7695 - 7712
  • [35] Inside-out: Antibody-binding reveals potential folding hinge-points within the SARS-CoV-2 replication co-factor nsp9
    Pan, Yue R.
    Chandrashekaran, Indu
    Tennant, Luke
    Rossjohn, Jamie
    Littler, Dene
    PLOS ONE, 2023, 18 (04):
  • [36] NMR-Based Analysis of Nanobodies to SARS-CoV-2 Nsp9 Reveals a Possible Antiviral Strategy Against COVID-19
    Esposito, Gennaro
    Hunashal, Yamanappa
    Percipalle, Mathias
    Venit, Tomas
    Dieng, Mame Massar
    Fogolari, Federico
    Hassanzadeh, Gholamreza
    Piano, Fabio
    Gunsalus, Kristin C.
    Idaghdour, Youssef
    Percipalle, Piergiorgio
    ADVANCED BIOLOGY, 2021, 5 (12):
  • [37] High-Throughput Screening and Quantum Mechanics for Identifying Potent Inhibitors Against Mac1 Domain of SARS-CoV-2 Nsp3
    Selvaraj, Chandrabose
    Dinesh, Dhurvas Chandrasekaran
    Panwar, Umesh
    Boura, Evzen
    Singh, Sanjeev Kumar
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (04) : 1262 - 1270
  • [38] Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach
    Romeo, Isabella
    Ambrosio, Francesca Alessandra
    Costa, Giosue
    Corona, Angela
    Alkhatib, Mohammad
    Salpini, Romina
    Lemme, Saverio
    Vergni, Davide
    Svicher, Valentina
    Santoro, Maria Mercedes
    Tramontano, Enzo
    Ceccherini-Silberstein, Francesca
    Artese, Anna
    Alcaro, Stefano
    MOLECULES, 2022, 27 (21):
  • [39] The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling
    Russo, Lilian Cristina
    Tomasin, Rebeka
    Matos, Isaac Araujo
    Manucci, Antonio Carlos
    Sowa, Sven T.
    Dale, Katie
    Caldecott, Keith W.
    Lehtio, Lari
    Schechtman, Deborah
    Meotti, Flavia C.
    Bruni-Cardoso, Alexandre
    Hoch, Nicolas Carlos
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 297 (03)
  • [40] Discovery and Genomic Characterization of a 382-Nucleotide Deletion in ORF7b and ORF8 during the Early Evolution of SARS-CoV-2
    Su, Yvonne C. F.
    Anderson, Danielle E.
    Young, Barnaby E.
    Linster, Martin
    Zhu, Feng
    Jayakumar, Jayanthi
    Zhuang, Yan
    Kalimuddin, Shirin
    Low, Jenny G. H.
    Tan, Chee Wah
    Chia, Wan Ni
    Mak, Tze Minn
    Octavia, Sophie
    Chavatte, Jean-Marc
    Lee, Raphael T. C.
    Pada, Surinder
    Tan, Seow Yen
    Sun, Louisa
    Yan, Gabriel Z.
    Maurer-Stroh, Sebastian
    Mendenhall, Ian H.
    Leo, Yee-Sin
    Lye, David Chien
    Wang, Lin-Fa
    Smith, Gavin J. D.
    MBIO, 2020, 11 (04): : 1 - 9