Object Tracking Based on Visual Attention

被引:0
|
作者
Lin, Mingqiang [1 ]
Dai, Houde [1 ]
机构
[1] Chinese Acad Sci, Quanzhou Inst Equipment Mfg Haixi Inst, Jinjiang, Fujian Province, Peoples R China
来源
2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA) | 2016年
基金
中国国家自然科学基金;
关键词
Object tracking; Visual attention; Saliency; Particle filtering;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Humans have the capability to quickly prioritize external visual stimuli and localize their most interest in a scene. Inspired by this mechanism, we propose a robust object tracking algorithm based on visual attention. We fuse motion feature and color feature to estimate the target state under the guidance of saliency map. Principal Component Analysis method is used to compute saliency feature based on the dense appearance model generated from the background templates. Motion feature is extracted by using the method which is a Bayesian decision rule for classification of background and foreground. Numerous experiments demonstrate the proposed method performs well against state-of-the-art tracking methods when dealing with illumination change, pose variation, occlusion, and background clutter situations.
引用
收藏
页码:1846 / 1849
页数:4
相关论文
共 50 条
  • [31] SiamDTA: Dual-Template Siamese Network Visual Object Tracking Algorithm Based on Attention Mechanism
    Wan, Zhen
    Ma, Sugang
    Zhang, Zixian
    Sun, Siwei
    2024 INTERNATIONAL CONFERENCE ON NETWORKING AND NETWORK APPLICATIONS, NANA 2024, 2024, : 418 - 423
  • [32] Object-based visual attention for computer vision
    Sun, YR
    Fisher, R
    ARTIFICIAL INTELLIGENCE, 2003, 146 (01) : 77 - 123
  • [33] Fast object detection based on selective visual attention
    Guo, Mingwei
    Zhao, Yuzhou
    Zhang, Chenbin
    Chen, Zonghai
    NEUROCOMPUTING, 2014, 144 : 184 - 197
  • [34] Studying visual attention using the multiple object tracking paradigm: A tutorial review
    Meyerhoff, Hauke S.
    Papenmeier, Frank
    Huff, Markus
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2017, 79 (05) : 1255 - 1274
  • [35] Studying visual attention using the multiple object tracking paradigm: A tutorial review
    Hauke S. Meyerhoff
    Frank Papenmeier
    Markus Huff
    Attention, Perception, & Psychophysics, 2017, 79 : 1255 - 1274
  • [36] Motion-seeded object-based attention for dynamic visual imagery
    Huber, David J.
    Khosla, Deepak
    Kim, Kyungnam
    AUTOMATIC TARGET RECOGNITION XXVII, 2017, 10202
  • [37] A Visual Object Tracking Algorithm Based on Improved TLD
    Zhen, Xinxin
    Fei, Shumin
    Wang, Yinmin
    Du, Wei
    ALGORITHMS, 2020, 13 (01)
  • [38] Hand gesture tracking algorithm based on visual attention
    冯志全
    徐涛
    吕娜
    唐好魁
    蒋彦
    梁丽伟
    JournalofBeijingInstituteofTechnology, 2016, 25 (04) : 491 - 501
  • [39] LOCAL-VARIANCE-BASED ATTENTION FOR VISUAL TRACKING
    Guo, Changlun
    Wen, Xianbin
    Yuan, Liming
    Xu, Haixia
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [40] ROBUST VISUAL TRACKING USING FEATURE-BASED VISUAL ATTENTION
    Zhang, Shengping
    Yao, Hongxun
    Liu, Shaohui
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1150 - 1153