A note on the Pfaffian integration theorem

被引:13
作者
Borodin, Alexei [1 ]
Kanzieper, Eugene
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
[2] HIT, Dept Appl Math, IL-58102 Holon, Israel
基金
美国国家科学基金会;
关键词
D O I
10.1088/1751-8113/40/36/F01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two alternative, fairly compact proofs are presented of the Pfaffian integration theorem that surfaced in the recent studies of spectral properties of Ginibre's Orthogonal Ensemble. The first proof is based on a concept of the Fredholm Pfaffian; the second proof is purely linear algebraic.
引用
收藏
页码:F849 / F855
页数:7
相关论文
共 12 条
[1]  
AKEMANN G, 2007, UNPUB J STAT PHYS
[2]  
[Anonymous], MATHCO0006097
[3]  
[Anonymous], 1995, LINEAR MULTILINEAR A, DOI DOI 10.1080/03081089508818403
[4]  
de Bruijn N. G., 1955, J. Indian Math. Soc., V19, P133, DOI DOI 10.18311/JIMS/1955/17010.31
[5]   CORRELATIONS BETWEEN EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 19 (03) :235-&
[7]  
GINIBRE J, 1965, J MATH PHYS, V19, P133
[8]  
Ishikawa M, 2000, ADV STU P M, V28, P133
[9]   Statistics of real eigenvalues in Ginibre's ensemble of random real matrices [J].
Kanzieper, E ;
Akemann, G .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)
[10]  
Macdonald IG., 2015, SYMMETRIC FUNCTIONS