Characterization of linear recurrences associated to rays in Pascal's triangle
被引:7
作者:
Belbachir, Hacene
论文数: 0引用数: 0
h-index: 0
机构:
USTHB, Fac Math, Po Box 32, Algiers 16111, AlgeriaUSTHB, Fac Math, Po Box 32, Algiers 16111, Algeria
Belbachir, Hacene
[1
]
Komatsu, Takao
论文数: 0引用数: 0
h-index: 0
机构:
Hirosaki Univ, Dept Math Sci, Hirosaki, Aomori 0368561, JapanUSTHB, Fac Math, Po Box 32, Algiers 16111, Algeria
Komatsu, Takao
[2
]
Szalay, Laszlo
论文数: 0引用数: 0
h-index: 0
机构:
Univ W Hungary, Inst Math & Stat, H-9400 Sopron, HungaryUSTHB, Fac Math, Po Box 32, Algiers 16111, Algeria
Szalay, Laszlo
[3
]
机构:
[1] USTHB, Fac Math, Po Box 32, Algiers 16111, Algeria
[2] Hirosaki Univ, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
[3] Univ W Hungary, Inst Math & Stat, H-9400 Sopron, Hungary
来源:
DIOPHANTINE ANALYSIS AND RELATED FIELDS 2010
|
2010年
/
1264卷
基金:
日本学术振兴会;
关键词:
Linear recurrence sequences;
Fibonacci numbers and polynomials;
Pascal triangle;
Morgon-Voyce sequence;
continued fractions;
combinatorial sums;
CHEBYSHEV;
D O I:
10.1063/1.3478184
中图分类号:
O59 [应用物理学];
学科分类号:
摘要:
Our purpose is to describe the recurrence relations associated to the sum of diagonal elements laying along a finite ray crossing Pascal's triangle. We also answer Horadam's question posed in his paper entitled Chebyshev and Pell connections, Fibonacci Quart., (2005). Further, using Morgan-Voyce sequence, we establish the nice identity Fn+1 - iF(n) = i(n) Sigma(n)(k=0) ((n+k)2k) (-2 -i)(k) of Fibonacci numbers, where i = root-1. Finally, connections to continued fractions, bivariate polynomials and finite differences are given.