Quantum phase transitions in algebraic and collective models of nuclear structure

被引:14
作者
Fortunato, L. [1 ,2 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron G Galilei, V Marzolo 8, I-35131 Padua, Italy
[2] INFN, Sez Padova, V Marzolo 8, I-35131 Padua, Italy
关键词
Quantum Phase Transitions; Algebraic models; Collective models; Quadrupole collectivity; CRITICAL-POINT SYMMETRY; INTERACTING BOSON MODEL; QUASI-DYNAMIC SYMMETRY; POSSIBLE E(5) SYMMETRY; EXCITED-STATES; SHAPE COEXISTENCE; CLASSICAL LIMIT; PARTICLE; EVOLUTION; SIGNATURES;
D O I
10.1016/j.ppnp.2021.103891
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Quantum Phase Transitions arising in algebraic and collective models of nuclear structure are reviewed. The concept of quantum phases and phase transitions is described as well as those of critical point symmetries and quasi-dynamical symmetries. Algebraic and collective models are compared and the connections between them are explored. Differences between even-even and odd-even systems are discussed. Several applica-tions of critical point symmetries are given in both the even and odd sectors. Details of the spherical to gamma-unstable and spherical to axially deformed quantum shape phase transition are covered in some detail as well as other transitions and alternative approaches. c 2021 Published by Elsevier B.V.
引用
收藏
页数:36
相关论文
共 170 条
  • [61] PHASE-TRANSITIONS AND THE GEOMETRIC-PROPERTIES OF THE INTERACTING BOSON MODEL
    FENG, DH
    GILMORE, R
    DEANS, SR
    [J]. PHYSICAL REVIEW C, 1981, 23 (03): : 1254 - 1258
  • [62] First test of the E(5/4) Bose-Fermi symmetry:: The structure of 135Ba
    Fetea, M. S.
    Cakirli, R. B.
    Casten, R. F.
    Warner, D. D.
    McCutchan, E. A.
    Meyer, D. A.
    Heinz, A.
    Ai, H.
    Gurdal, G.
    Qian, J.
    Winkler, R.
    [J]. PHYSICAL REVIEW C, 2006, 73 (05):
  • [63] (T,P) REACTION TO LOW-LYING LEVELS OF ZIRCONIUM ISOTOPES
    FLYNN, ER
    BEERY, JG
    BLAIR, AG
    [J]. NUCLEAR PHYSICS A, 1974, A218 (02) : 285 - 306
  • [64] Solution of the Bohr Hamiltonian for soft triaxial nuclei
    Fortunato, L.
    De Baerdemacker, S.
    Heyde, K.
    [J]. PHYSICAL REVIEW C, 2006, 74 (01):
  • [65] Phase diagram for a cubic-Q interacting boson model Hamiltonian: Signs of triaxiality
    Fortunato, L.
    Alonso, C. E.
    Arias, J. M.
    Garcia-Ramos, J. E.
    Vitturi, A.
    [J]. PHYSICAL REVIEW C, 2011, 84 (01):
  • [66] Angular momentum non-conserving symmetries in bosonic models
    Fortunato, L.
    de Graaf, W. A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)
  • [67] Fortunato Lorenzo, 2009, Europhysics News, V40, P25, DOI 10.1051/epn/2009403
  • [68] Fortunato L., 2005, EUR PHYS J A, V26, ps01
  • [69] Fortunato L., 2018, JPS C P, V23
  • [70] Fortunato L, 2005, NUCL THEORY, V24, P280