The evidence framework applied to sparse kernel logistic regression

被引:9
|
作者
Cawley, GC [1 ]
Talbot, NLC [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Bayesian learning; kernel methods; logistic regression;
D O I
10.1016/j.neucom.2004.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based on the evidence framework introduced by MacKay. The principal innovation lies in the re-parameterisation of the model such that the usual spherical Gaussian prior over the parameters in the kernel-induced feature space also corresponds to a spherical Gaussian prior over the transformed parameters, permitting the straight-forward derivation of an efficient update formula for the regularisation parameter. The Bayesian framework also allows the selection of good values for kernel parameters through maximisation of the marginal likelihood, or evidence, for the model. Results obtained on a variety of benchmark data sets are provided indicating that the Bayesian KLR model is competitive with KLR models, where the hyper-parameters are selected via cross-validation and with the support vector machine and relevance vector machine. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 50 条
  • [21] A kernel regression framework for SMT
    Wang, Zhuoran
    Shawe-Taylor, John
    MACHINE TRANSLATION, 2010, 24 (02) : 87 - 102
  • [22] Robust weighted kernel logistic regression in imbalanced and rare events data
    Maalouf, Maher
    Trafalis, Theodore B.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 168 - 183
  • [23] Variable Selection for Sparse Logistic Regression with Grouped Variables
    Zhong, Mingrui
    Yin, Zanhua
    Wang, Zhichao
    MATHEMATICS, 2023, 11 (24)
  • [24] Sparse Logistic Regression: Comparison of Regularization and Bayesian Implementations
    Zanon, Mattia
    Zambonin, Giuliano
    Susto, Gian Antonio
    McLoone, Sean
    ALGORITHMS, 2020, 13 (06)
  • [25] MLSLR: Multilabel Learning via Sparse Logistic Regression
    Liu, Huawen
    Zhang, Shichao
    Wu, Xindong
    INFORMATION SCIENCES, 2014, 281 : 310 - 320
  • [26] Clinical Risk Prediction with Multilinear Sparse Logistic Regression
    Wang, Fei
    Zhang, Ping
    Qian, Buyue
    Wang, Xiang
    Davidson, Ian
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 145 - 154
  • [27] CLASSIFICATION MODEL FOR TYPE OF STROKE USING KERNEL LOGISTIC REGRESSION
    Annas, Suwardi
    Poerwanto, Bobby
    Aswi
    Abdy, Muhammad
    Fa'rifah, Riska Yanu
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [28] IMAGE SEGMENTATION USING SPARSE LOGISTIC REGRESSION WITH SPATIAL PRIOR
    Ruusuvuori, Pekka
    Manninen, Tapio
    Huttunen, Heikki
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2253 - 2257
  • [29] BAYESIAN ERROR ESTIMATION AND MODEL SELECTION IN SPARSE LOGISTIC REGRESSION
    Huttunen, Heikki
    Manninen, Tapio
    Tohka, Jussi
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [30] Logistic Regression Ensemble (LORENS) Applied to Drug Discovery
    Widhianingsih, T. Dwi Ary
    Kuswanto, Heri
    Prastyo, Dedy Dwi
    MATEMATIKA, 2020, 36 (01) : 43 - 49