The evidence framework applied to sparse kernel logistic regression

被引:9
|
作者
Cawley, GC [1 ]
Talbot, NLC [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Bayesian learning; kernel methods; logistic regression;
D O I
10.1016/j.neucom.2004.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based on the evidence framework introduced by MacKay. The principal innovation lies in the re-parameterisation of the model such that the usual spherical Gaussian prior over the parameters in the kernel-induced feature space also corresponds to a spherical Gaussian prior over the transformed parameters, permitting the straight-forward derivation of an efficient update formula for the regularisation parameter. The Bayesian framework also allows the selection of good values for kernel parameters through maximisation of the marginal likelihood, or evidence, for the model. Results obtained on a variety of benchmark data sets are provided indicating that the Bayesian KLR model is competitive with KLR models, where the hyper-parameters are selected via cross-validation and with the support vector machine and relevance vector machine. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 50 条
  • [1] A sparse logistic regression framework by difference of convex functions programming
    Liming Yang
    Yannan Qian
    Applied Intelligence, 2016, 45 : 241 - 254
  • [2] A sparse logistic regression framework by difference of convex functions programming
    Yang, Liming
    Qian, Yannan
    APPLIED INTELLIGENCE, 2016, 45 (02) : 241 - 254
  • [3] A fast dual algorithm for kernel logistic regression
    Keerthi, SS
    Duan, KB
    Shevade, SK
    Poo, AN
    MACHINE LEARNING, 2005, 61 (1-3) : 151 - 165
  • [4] Indefinite Kernel Logistic Regression
    Liu, Fanghui
    Huang, Xiaolin
    Yang, Jie
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 846 - 853
  • [5] A Fast Dual Algorithm for Kernel Logistic Regression
    S. S. Keerthi
    K. B. Duan
    S. K. Shevade
    A. N. Poo
    Machine Learning, 2005, 61 : 151 - 165
  • [6] Robust and sparse logistic regression
    Cornilly, Dries
    Tubex, Lise
    Van Aelst, Stefan
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 663 - 679
  • [7] On Regularized Sparse Logistic Regression
    Zhang, Mengyuan
    Liu, Kai
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1535 - 1540
  • [8] Kernel logistic regression using truncated Newton method
    Maalouf, Maher
    Trafalis, Theodore B.
    Adrianto, Indra
    COMPUTATIONAL MANAGEMENT SCIENCE, 2011, 8 (04) : 415 - 428
  • [9] Support vector machines, kernel logistic regression and boosting
    Zhu, J
    Hastie, R
    MULTIPLE CLASSIFIER SYSTEMS, 2002, 2364 : 16 - 26
  • [10] An aggregation method for sparse logistic regression
    Liu, Zhe
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 17 (01) : 85 - 96