共 50 条
Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions
被引:9
|作者:
Ma, Ruyun
[1
]
Chen, Tianlan
[1
]
Wang, Haiyan
[2
]
机构:
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Arizona State Univ, Div Math & Nat Sci, Phoenix, AZ 85069 USA
关键词:
Radial eigenvalue;
Neumann problem;
Nonconstant radial solutions;
Bifurcation;
Perron-Frobenius Theorem;
NONLINEAR EIGENVALUE PROBLEMS;
GLOBAL BIFURCATION;
NODAL SOLUTIONS;
FIXED-POINTS;
EQUATIONS;
MAPPINGS;
D O I:
10.1016/j.jmaa.2016.05.038
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let B-R be the ball of radius R in R-N with N >= 2. We consider the nonconstant radial positive solutions of elliptic systems of the form -Delta u + u = f(u, v) in B-R, -Delta v +v = g(u, v) in B-R, partial derivative(nu)u =partial derivative(nu)v = 0 on partial derivative B-R, where f and g are nondecreasing in each component. With few assumptions on the nonlinearities, we apply bifurcation theory to show the existence of at least one nonnegative, nonconstant and nondecreasing solution. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:542 / 565
页数:24
相关论文