Wavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure

被引:8
|
作者
Balasuriya, Sanjeeva [3 ,4 ]
Gottwald, Georg A. [1 ,2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Sydney, Ctr Math Biol, Sydney, NSW 2006, Australia
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Connecticut Coll, Goodwin Niering Ctr Conservat Biol & Environm Stu, Dept Math, New London, CT 06320 USA
关键词
SELF-CONSISTENT FLOW; PATTERN-FORMATION; TRAVELING-WAVE; FRONTS; PERSISTENCE; DYNAMICS; MODEL;
D O I
10.1007/s00285-009-0305-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a method based on the Melnikov function used in dynamical systems theory to determine the wavespeed of travelling waves in perturbed reaction-diffusion systems. We study reaction-diffusion systems which are subject to weak nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with weak active advection. We find explicit formul' for the wavespeed and illustrate our theory with two examples; one in which chemotaxis gives rise to nonlinear advection and a second example in which a positive population pressure results in both a density-dependent diffusion coefficient and a nonlinear advection. Based on our theoretical results we suggest an experiment to distinguish between chemotactic and population pressure in bacterial colonies.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
  • [41] Spatiotemporal chaos and quasipatterns in coupled reaction-diffusion systems
    Castelino, Jennifer K.
    Ratliff, Daniel J.
    Rucklidge, Alastair M.
    Subramanian, Priya
    Topaz, Chad M.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 409
  • [42] STABILITY OF A PLANAR FRONT IN A CLASS OF REACTION-DIFFUSION SYSTEMS
    Ghazaryan, A.
    Latushkin, Y.
    Yang, X.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5569 - 5615
  • [43] TRAVELING WAVE SOLUTIONS IN A NONLOCAL REACTION-DIFFUSION POPULATION MODEL
    Han, Bang-Sheng
    Wang, Zhi-Cheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 1057 - 1076
  • [44] Spatio-temporal dynamics for cooperative reaction-diffusion systems with asymptotic annihilation
    Hou, Tian
    Wang, Yi
    Zhao, Xiao-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 432
  • [45] Traveling wavefronts in a reaction-diffusion model with chemotaxis and nonlocal delay effect
    Li, Dong
    Guo, Shangjiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 736 - 754
  • [46] Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis
    Ma, Manjun
    Gao, Meiyan
    Carretero-Gonzalez, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1883 - 1909
  • [47] Turing instabilities in reaction-diffusion systems with cross diffusion
    Fanelli, Duccio
    Cianci, Claudia
    Di Patti, Francesca
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (04)
  • [48] Effects of chemotaxis and time delay on the spatiotemporal patterns of a two-species reaction-diffusion system
    Zuo, Wenjie
    Song, Binbin
    Chen, Yuming
    CHAOS SOLITONS & FRACTALS, 2025, 190
  • [49] Pattern formation in reaction-diffusion systems in the presence of non-Markovian diffusion
    Torabi, Reza
    Davidsen, Jorn
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [50] TURING PATTERNS IN GENERAL REACTION-DIFFUSION SYSTEMS OF BRUSSELATOR TYPE
    Ghergu, Marius
    Radulescu, Vicentiu
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (04) : 661 - 679