Wavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure

被引:8
|
作者
Balasuriya, Sanjeeva [3 ,4 ]
Gottwald, Georg A. [1 ,2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Sydney, Ctr Math Biol, Sydney, NSW 2006, Australia
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Connecticut Coll, Goodwin Niering Ctr Conservat Biol & Environm Stu, Dept Math, New London, CT 06320 USA
关键词
SELF-CONSISTENT FLOW; PATTERN-FORMATION; TRAVELING-WAVE; FRONTS; PERSISTENCE; DYNAMICS; MODEL;
D O I
10.1007/s00285-009-0305-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a method based on the Melnikov function used in dynamical systems theory to determine the wavespeed of travelling waves in perturbed reaction-diffusion systems. We study reaction-diffusion systems which are subject to weak nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with weak active advection. We find explicit formul' for the wavespeed and illustrate our theory with two examples; one in which chemotaxis gives rise to nonlinear advection and a second example in which a positive population pressure results in both a density-dependent diffusion coefficient and a nonlinear advection. Based on our theoretical results we suggest an experiment to distinguish between chemotactic and population pressure in bacterial colonies.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
  • [31] Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications
    Pan, Shuxia
    Li, Wan-Tong
    Lin, Guo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (03): : 377 - 392
  • [32] Convolution Representation of Traveling Pulses in Reaction-Diffusion Systems
    Kawaguchi, Satoshi
    ADVANCES IN MATHEMATICAL PHYSICS, 2023, 2023
  • [33] Global solvability of a class of reaction-diffusion systems with cross-diffusion
    Wang, Zhi-An
    Wu, Leyun
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [34] EFFECTIVE ROUGH BOUNDARY PARAMETRIZATION FOR REACTION-DIFFUSION SYSTEMS
    Mocenni, C.
    Sparacino, E.
    Zubelli, J. P.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2014, 8 (01) : 33 - 59
  • [35] The linear noise approximation for reaction-diffusion systems on networks
    Asllani, Malbor
    Biancalani, Tommaso
    Fanelli, Duccio
    McKane, Alan J.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11)
  • [36] Double Hopf Bifurcation in Delayed reaction-diffusion Systems
    Du, Yanfei
    Niu, Ben
    Guo, Yuxiao
    Wei, Junjie
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (01) : 313 - 358
  • [37] Reaction-diffusion systems with stochastic time delay in kinetics
    Sen, Shrabani
    Ghosh, Pushpita
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [38] Wavelength Selection by Interrupted Coarsening in Reaction-Diffusion Systems
    Brauns, Fridtjof
    Weyer, Henrik
    Halatek, Jacob
    Yoon, Junghoon
    Frey, Erwin
    PHYSICAL REVIEW LETTERS, 2021, 126 (10)
  • [39] THE PRINCIPAL EIGENVALUE FOR DEGENERATE PERIODIC REACTION-DIFFUSION SYSTEMS
    Liang, Xing
    Zhang, Lei
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3603 - 3636
  • [40] PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS ON GROWNING DOMAINS
    Gonzalez, Libardo A.
    Vanegas, Juan C.
    Garzon, Diego A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (02): : 145 - 161