Wavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure

被引:8
|
作者
Balasuriya, Sanjeeva [3 ,4 ]
Gottwald, Georg A. [1 ,2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Sydney, Ctr Math Biol, Sydney, NSW 2006, Australia
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Connecticut Coll, Goodwin Niering Ctr Conservat Biol & Environm Stu, Dept Math, New London, CT 06320 USA
关键词
SELF-CONSISTENT FLOW; PATTERN-FORMATION; TRAVELING-WAVE; FRONTS; PERSISTENCE; DYNAMICS; MODEL;
D O I
10.1007/s00285-009-0305-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a method based on the Melnikov function used in dynamical systems theory to determine the wavespeed of travelling waves in perturbed reaction-diffusion systems. We study reaction-diffusion systems which are subject to weak nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with weak active advection. We find explicit formul' for the wavespeed and illustrate our theory with two examples; one in which chemotaxis gives rise to nonlinear advection and a second example in which a positive population pressure results in both a density-dependent diffusion coefficient and a nonlinear advection. Based on our theoretical results we suggest an experiment to distinguish between chemotactic and population pressure in bacterial colonies.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
  • [21] Entire solutions for some reaction-diffusion systems
    Lv, Guangying
    Luo, Dang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (04)
  • [22] Control of transversal instabilities in reaction-diffusion systems
    Totz, Sonja
    Loeber, Jakob
    Totz, Jan Frederik
    Engel, Harald
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [23] Traveling wave solutions for reaction-diffusion systems
    Lin, Zhigui
    Pedersen, Michael
    Tian, Canrong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3303 - 3313
  • [24] Instability induced by cross-diffusion in reaction-diffusion systems
    Tian, Canrong
    Lin, Zhigui
    Pedersen, Michael
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 1036 - 1045
  • [25] Scaling of morphogenetic patterns in reaction-diffusion systems
    Rasolonjanahary, Manan'Iarivo
    Vasiev, Bakhtier
    JOURNAL OF THEORETICAL BIOLOGY, 2016, 404 : 109 - 119
  • [26] LIOUVILLE-GREEN APPROXIMATION FOR LINEARLY COUPLED SYSTEMS: ASYMPTOTIC ANALYSIS WITH APPLICATIONS TO REACTION-DIFFUSION SYSTEMS
    Kovac, Juraj
    Klika, Vaclav
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (09): : 2553 - 2579
  • [27] Traveling wave solutions in temporally discrete reaction-diffusion systems with delays
    Xia, Jing
    Yu, Zhixian
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (10): : 809 - 823
  • [28] Stochastic fluctuations and quasipattern formation in reaction-diffusion systems with anomalous transport
    Baron, Joseph W.
    Galla, Tobias
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [29] Pattern formations in nonlinear reaction-diffusion systems with strong localized impurities
    Chen, Yuanxian
    Li, Ji
    Shen, Jianhe
    Zhang, Qian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 402 : 250 - 289
  • [30] Matrix-oriented discretization methods for reaction-diffusion PDEs: Comparisons and applications
    D'Autilia, Maria Chiara
    Sgura, Ivonne
    Simoncini, Valeria
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) : 2067 - 2085