Wavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure

被引:8
|
作者
Balasuriya, Sanjeeva [3 ,4 ]
Gottwald, Georg A. [1 ,2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Sydney, Ctr Math Biol, Sydney, NSW 2006, Australia
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Connecticut Coll, Goodwin Niering Ctr Conservat Biol & Environm Stu, Dept Math, New London, CT 06320 USA
关键词
SELF-CONSISTENT FLOW; PATTERN-FORMATION; TRAVELING-WAVE; FRONTS; PERSISTENCE; DYNAMICS; MODEL;
D O I
10.1007/s00285-009-0305-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a method based on the Melnikov function used in dynamical systems theory to determine the wavespeed of travelling waves in perturbed reaction-diffusion systems. We study reaction-diffusion systems which are subject to weak nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with weak active advection. We find explicit formul' for the wavespeed and illustrate our theory with two examples; one in which chemotaxis gives rise to nonlinear advection and a second example in which a positive population pressure results in both a density-dependent diffusion coefficient and a nonlinear advection. Based on our theoretical results we suggest an experiment to distinguish between chemotactic and population pressure in bacterial colonies.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
  • [1] Reaction-Diffusion Equations with Applications to Economic Systems
    Ganguly, Srinjoy
    Neogi, Upasana
    Chakrabarti, Anindya S.
    Chakraborti, Anirban
    ECONOPHYSICS AND SOCIOPHYSICS: RECENT PROGRESS AND FUTURE DIRECTIONS, 2017, : 131 - 144
  • [2] Isolating Patterns in Open Reaction-Diffusion Systems
    Krause, Andrew L.
    Klika, Vaclav
    Maini, Philip K.
    Headon, Denis
    Gaffney, Eamonn A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (07)
  • [3] A chemotaxis reaction-diffusion model for Multiple Sclerosis with Allee effect
    Bisi, Marzia
    Groppi, Maria
    Martalo, Giorgio
    Soresina, Cinzia
    RICERCHE DI MATEMATICA, 2024, 73 (SUPPL 1) : 29 - 46
  • [4] TRAVELLING WAVE SOLUTIONS IN NONLOCAL REACTION-DIFFUSION SYSTEMS WITH DELAYS AND APPLICATIONS
    Yu, Zhi-Xian
    Yuan, Rong
    ANZIAM JOURNAL, 2009, 51 (01) : 49 - 66
  • [5] Traveling waves of delayed reaction-diffusion systems with applications
    Yu, Zhi-Xian
    Yuan, Rong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2475 - 2488
  • [6] Moving Finite Element Simulations for Reaction-Diffusion Systems
    Hu, Guanghui
    Qiao, Zhonghua
    Tang, Tao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (03) : 365 - 381
  • [7] Spiking at the edge: Excitability at interfaces in reaction-diffusion systems
    Scheibner, Colin
    Ori, Hillel
    Cohen, Adam E.
    Vitelli, Vincenzo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (03)
  • [8] WAVE PHENOMENA IN REACTION-DIFFUSION SYSTEMS
    Steinbock, Oliver
    Engel, Harald
    ENGINEERING OF CHEMICAL COMPLEXITY, 2013, 11 : 147 - 167
  • [9] Wave features of a hyperbolic reaction-diffusion model for Chemotaxis
    Barbera, Elvira
    Valenti, Giovanna
    WAVE MOTION, 2018, 78 : 116 - 131
  • [10] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):