Infiltrated hollow core fiber interferometer for high sensitive temperature and refractive index sensing

被引:3
作者
Chen, Linjia [1 ]
Su, Qi [1 ]
Liu, Shuhui [1 ]
Li, Litong [2 ]
机构
[1] Wuhan Inst Technol, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
[2] Yangtze Opt Fiber & Cable Joint Stock Ltd Co, R&D Ctr, State Key Lab Opt Fiber & Cable Manufacture Techn, Wuhan 430073, Peoples R China
来源
OPTIK | 2021年 / 243卷
基金
中国国家自然科学基金;
关键词
Multi-parameter sensor; Photonic crystal fiber; Long period grating; PHOTONIC-CRYSTAL-FIBER; MACH-ZEHNDER INTERFEROMETER; LONG-PERIOD GRATINGS; SELECTIVE INFILTRATION; FEMTOSECOND LASER; SENSOR; INTENSITY; STRAIN; WAVELENGTH; CAVITY;
D O I
10.1016/j.ijleo.2021.167336
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A simple fiber sensor based on liquid infiltrated modal interferometer created in hollow core fiber is proposed and demonstrated for temperature and refractive index (RI) sensing with high sensitivities. The fiber sensor is constructed by splicing a section of hollow core fiber filled with high index liquids between single mode fibers. The infiltration of the liquids changes the transmission property of the hollow core fiber, and modal interference is introduced in such a section of fiber. Due to the high thermo-optic coefficient of the liquid, the sensor is highly sensitive to temperature change. The sensor exhibits different temperature sensitivities in different temperature ranges, and the highest sensitivity (-1.4 nm/degrees C) is obtained in the temperature range from 22 degrees C to 36 degrees C. The RI response of the sensor is also investigated, and the sensor exhibits a spectrum shift towards longer wavelength as the ambient liquid RI increases, and a highest sensitivity of 884 nm/RIU is achieved. The proposed sensor is simple and cost effective, and is promising to be developed for high accuracy temperature measurements in the fields of biomedical and chemical applications.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors [J].
Allsop, T. ;
Kalli, K. ;
Zhou, K. ;
Lai, Y. ;
Smith, G. ;
Dubov, M. ;
Webb, D. J. ;
Bennion, I. .
OPTICS COMMUNICATIONS, 2008, 281 (20) :5092-5096
[2]   Tapered fibre Mach-Zehnder interferometer for simultaneous measurement of liquid level and temperature [J].
Chen, T. ;
Chen, R. ;
Lu, P. ;
Chen, Q. ;
Chen, K. P. .
ELECTRONICS LETTERS, 2011, 47 (19) :1093-1094
[3]   Temperature-insensitive long period grating sensors in photonic crystal fibre [J].
Dobb, H ;
Kalli, K ;
Webb, DJ .
ELECTRONICS LETTERS, 2004, 40 (11) :657-658
[4]   Temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber modal-interferometer-based microdisplacement sensor [J].
Dong, Bo ;
Hao, Emily Jianzhong .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (10) :2332-2336
[5]   A fiber laser temperature sensor based on SMF core-offset structure [J].
Hao, Xia ;
Tong, Zhengrong ;
Zhang, Weihua ;
Cao, Ye .
OPTICS COMMUNICATIONS, 2015, 335 :78-81
[6]   Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber [J].
He, Zonghu ;
Zhu, Yinian ;
Du, Henry .
OPTICS EXPRESS, 2007, 15 (04) :1804-1810
[7]   Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing [J].
Hu, T. Y. ;
Wang, Y. ;
Liao, C. R. ;
Wang, D. N. .
OPTICS LETTERS, 2012, 37 (24) :5082-5084
[8]   Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity [J].
Jiang, L. ;
Yang, J. ;
Wang, S. ;
Li, B. ;
Wang, M. .
OPTICS LETTERS, 2011, 36 (19) :3753-3755
[9]   Structural long-period gratings in photonic crystal fibers [J].
Kakarantzas, G ;
Birks, TA ;
Russell, PS .
OPTICS LETTERS, 2002, 27 (12) :1013-1015
[10]   Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator [J].
Kornaszewski, L. ;
Gayraud, N. ;
Stone, J. M. ;
MacPherson, W. N. ;
George, A. K. ;
Knight, J. C. ;
Hand, D. P. ;
Reid, D. T. .
OPTICS EXPRESS, 2007, 15 (18) :11219-11224