Shoreline predictive modeling using artificial neural networks

被引:5
作者
Goncalves, Rodrigo Mikosz [1 ,2 ]
Coelho, Leandro Dos Santos [3 ]
Krueger, Claudia Pereira [2 ]
Heck, Bernhard [4 ]
机构
[1] Univ Fed Pernambuco UFPE, CTG, Dept Engn Cartog, Recife, PE, Brazil
[2] Univ Fed Parana UFPR, Programa Posgrad Ciencias Geodes, Curitiba, Parana, Brazil
[3] Pontificia Univ Catolica Parana PUC PR, Programa Posgrad Engn Prod & Sistemas, Curitiba, Parana, Brazil
[4] Geodet Inst Karlsruhe, Karlsruhe Inst Technol, Karlsruhe, Alemanha, Germany
来源
BOLETIM DE CIENCIAS GEODESICAS | 2010年 / 16卷 / 03期
关键词
Coastal Mapping; Artificial Neural Network; Prediction Models; Shoreline;
D O I
10.1590/S1982-21702010000300004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of models using geodetic temporal data which can possibly predict the shoreline position is an important task and can significantly contribute to coastal management. The studied area is located at municipality of Matinhos in the Parana State, Brazil. The temporal shoreline used to test the prediction model is respectively from analog photogrammetric data, related to the years 1954, 1963, 1980, 1991 and 1997, and GPS (Global Position System) geodetic surveys for 2001, 2002, 2005 and 2008 (as control). Two different tests with artificial neural network were organized setting the parameters like: architecture, number of neuron in hidden layers and the training algorithms. Comparing the residuals between the prediction to the shoreline of control, the best statistical results show the MAPE (Mean Absolute Percentage Error) is 0,28% using the Elman partially recurrent network with quasi-Newton training function and 0,46% using the neural network multilayer perceptron with Bayesian regulation training function.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 50 条
  • [41] Modeling a Thermal Area for Energy Consumption Estimation using Artificial Neural Networks
    Antonache, Andra-Laura
    Stegaru, Silvia Cristina
    Carutasiu, Mihail-Bogdan
    Patru, Cristian
    2020 19TH ROEDUNET CONFERENCE: NETWORKING IN EDUCATION AND RESEARCH (ROEDUNET), 2020,
  • [42] Modeling and investigation of smart Capacitive Pressure Sensor using Artificial Neural Networks
    Menacer, F.
    Kadri, A.
    Djeffal, F.
    Dibi, Z.
    2017 6TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC' 17), 2017, : 455 - 460
  • [43] Modeling Biodegradable Free Chlorine Sensor Performance Using Artificial Neural Networks
    Siddiqui, Junaid
    Deen, M. Jamal
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (02)
  • [44] MATHEMATICAL MODELING OF LOCAL CALCIUM SIGNALING IN NEURONS USING ARTIFICIAL NEURAL NETWORKS
    Upadhyay, Dharmik
    Joshi, Hardik
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2025, : 1392 - 1415
  • [45] Modeling ultimate deformation capacity of RC columns using artificial neural networks
    Inel, Mehmet
    ENGINEERING STRUCTURES, 2007, 29 (03) : 329 - 335
  • [46] Modeling Viscosity of Volcanic Melts With Artificial Neural Networks
    Langhammer, D.
    Di Genova, D.
    Steinle-Neumann, G.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2022, 23 (12)
  • [47] EEG-Brain Activity Monitoring and Predictive Analysis of Signals Using Artificial Neural Networks
    Aileni, Raluca Maria
    Pasca, Sever
    Florescu, Adriana
    SENSORS, 2020, 20 (12) : 1 - 21
  • [48] PREDICTIVE MODELING FOR AN INDUSTRIAL NAPHTHA REFORMING PLANT USING ARTIFICIAL NEURAL NETWORK WITH RECURRENT LAYERS
    Sadighi, Sepehr
    Mohaddecy, Reza Seif
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2013, 4 (02) : 102 - 111
  • [49] Performance Analysis Among Predictive Models of Lightning Occurrence Using Artificial Neural Networks and SMOTE
    Alves, Elton Rafael
    Raiol Leal, AdOnis Ferreira
    Lopes, Marcio Nirlando G.
    Fonseca, Alber da Silva
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (05) : 755 - 762
  • [50] Modeling of supercritical ethane extraction by artificial neural networks
    Yang, SX
    Li, H
    Shi, J
    MULTIMEDIA, IMAGE PROCESSING AND SOFT COMPUTING: TRENDS, PRINCIPLES AND APPLICATIONS, 2002, 13 : 171 - 176