Shoreline predictive modeling using artificial neural networks

被引:5
|
作者
Goncalves, Rodrigo Mikosz [1 ,2 ]
Coelho, Leandro Dos Santos [3 ]
Krueger, Claudia Pereira [2 ]
Heck, Bernhard [4 ]
机构
[1] Univ Fed Pernambuco UFPE, CTG, Dept Engn Cartog, Recife, PE, Brazil
[2] Univ Fed Parana UFPR, Programa Posgrad Ciencias Geodes, Curitiba, Parana, Brazil
[3] Pontificia Univ Catolica Parana PUC PR, Programa Posgrad Engn Prod & Sistemas, Curitiba, Parana, Brazil
[4] Geodet Inst Karlsruhe, Karlsruhe Inst Technol, Karlsruhe, Alemanha, Germany
来源
BOLETIM DE CIENCIAS GEODESICAS | 2010年 / 16卷 / 03期
关键词
Coastal Mapping; Artificial Neural Network; Prediction Models; Shoreline;
D O I
10.1590/S1982-21702010000300004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of models using geodetic temporal data which can possibly predict the shoreline position is an important task and can significantly contribute to coastal management. The studied area is located at municipality of Matinhos in the Parana State, Brazil. The temporal shoreline used to test the prediction model is respectively from analog photogrammetric data, related to the years 1954, 1963, 1980, 1991 and 1997, and GPS (Global Position System) geodetic surveys for 2001, 2002, 2005 and 2008 (as control). Two different tests with artificial neural network were organized setting the parameters like: architecture, number of neuron in hidden layers and the training algorithms. Comparing the residuals between the prediction to the shoreline of control, the best statistical results show the MAPE (Mean Absolute Percentage Error) is 0,28% using the Elman partially recurrent network with quasi-Newton training function and 0,46% using the neural network multilayer perceptron with Bayesian regulation training function.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 50 条
  • [41] Modeling of Heat Transfer in Cisterns Using Artificial Neural Networks
    Madoliat, R.
    Razavi, M.
    Dehghani, A. R.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2009, 23 (02) : 411 - 416
  • [42] Modeling and Forecasting Cases of RSV Using Artificial Neural Networks
    Cogollo, Myladis R.
    Gonzalez-Parra, Gilberto
    Arenas, Abraham J.
    MATHEMATICS, 2021, 9 (22)
  • [43] Modeling Historical Traffic Data using Artificial Neural Networks
    Ghanim, Mohammad S.
    Abu-Lebdeh, Ghassan
    Ahmed, Kamran
    2013 5TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND APPLIED OPTIMIZATION (ICMSAO), 2013,
  • [44] Modeling and Simulation of Biomass Drying Using Artificial Neural Networks
    Francik, Slawomir
    Lapczynska-Kordon, Boguslawa
    Francik, Renata
    Wojcik, Artur
    RENEWABLE ENERGY SOURCES: ENGINEERING, TECHNOLOGY, INNOVATION, 2018, : 571 - 581
  • [45] Using the artificial neural networks for accurate RF devices modeling
    Pospísil, L
    Dobes, J
    Proceedings of the 4th WSEAS International Conference on Applications of Electrical Engineering, 2005, : 139 - 143
  • [46] Modeling of CO distribution in Istanbul using Artificial Neural Networks
    Sahin, U
    Ucan, ON
    Soyhan, B
    Bayat, C
    FRESENIUS ENVIRONMENTAL BULLETIN, 2004, 13 (09): : 839 - 845
  • [47] Modeling Lipase Production Process Using Artificial Neural Networks
    Sheta, Alaa F.
    Hiary, Rania
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 1158 - 1163
  • [48] Static modeling of GMAW process using artificial neural networks
    Di, L
    Chandel, RS
    Srikanthan, T
    MATERIALS AND MANUFACTURING PROCESSES, 1999, 14 (01) : 13 - 35
  • [49] Using artificial neural networks for modeling suspended sediment concentration
    Wang, Yu-Min
    Traore, Seydou
    Kerh, Tienfuan
    MMACTEE' 08: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE MATHERMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING: COMPUTATIONAL METHODS AND INTELLIGENT SYSTEMS, 2008, : 108 - +
  • [50] Modeling of desilication of green liquor using artificial neural networks
    Mandavgane, SA
    Pandharipande, SL
    Subrarnanian, D
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2006, 13 (02) : 168 - 172