Shoreline predictive modeling using artificial neural networks

被引:5
|
作者
Goncalves, Rodrigo Mikosz [1 ,2 ]
Coelho, Leandro Dos Santos [3 ]
Krueger, Claudia Pereira [2 ]
Heck, Bernhard [4 ]
机构
[1] Univ Fed Pernambuco UFPE, CTG, Dept Engn Cartog, Recife, PE, Brazil
[2] Univ Fed Parana UFPR, Programa Posgrad Ciencias Geodes, Curitiba, Parana, Brazil
[3] Pontificia Univ Catolica Parana PUC PR, Programa Posgrad Engn Prod & Sistemas, Curitiba, Parana, Brazil
[4] Geodet Inst Karlsruhe, Karlsruhe Inst Technol, Karlsruhe, Alemanha, Germany
来源
BOLETIM DE CIENCIAS GEODESICAS | 2010年 / 16卷 / 03期
关键词
Coastal Mapping; Artificial Neural Network; Prediction Models; Shoreline;
D O I
10.1590/S1982-21702010000300004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of models using geodetic temporal data which can possibly predict the shoreline position is an important task and can significantly contribute to coastal management. The studied area is located at municipality of Matinhos in the Parana State, Brazil. The temporal shoreline used to test the prediction model is respectively from analog photogrammetric data, related to the years 1954, 1963, 1980, 1991 and 1997, and GPS (Global Position System) geodetic surveys for 2001, 2002, 2005 and 2008 (as control). Two different tests with artificial neural network were organized setting the parameters like: architecture, number of neuron in hidden layers and the training algorithms. Comparing the residuals between the prediction to the shoreline of control, the best statistical results show the MAPE (Mean Absolute Percentage Error) is 0,28% using the Elman partially recurrent network with quasi-Newton training function and 0,46% using the neural network multilayer perceptron with Bayesian regulation training function.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 50 条
  • [31] Intelligent Transportation Systems and NO2 Emissions: Predictive Modeling Approach Using Artificial Neural Networks
    Gupta, Dinesh
    Cohn, Louis F.
    JOURNAL OF INFRASTRUCTURE SYSTEMS, 2012, 18 (02) : 113 - 118
  • [32] Predictive Modeling of the Mechanical Properties of Alpha Alumina Using Artificial Neural Networks and Multiple Linear Regression
    H. Belghalem
    B. Fissah
    M. Djeddou
    M. Hamidouche
    Glass and Ceramics, 2023, 80 : 347 - 354
  • [33] Predictive non-linear modeling of complex data by artificial neural networks
    Almeida, JS
    CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (01) : 72 - 76
  • [34] Predictive Modeling of Fire Incidence Using Deep Neural Networks
    Ku, Cheng-Yu
    Liu, Chih-Yu
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [35] Developing a predictive model for nanoimprint lithography using artificial neural networks
    Akter, Tahmina
    Desai, Salil
    MATERIALS & DESIGN, 2018, 160 : 836 - 848
  • [36] A Predictive Maintenance Approach for Power Converters Using Artificial Neural Networks
    Xia, Minglu
    Shum, Tak Lok
    Chau, Chi Hing
    Cabahug, Jon Sichon
    Gao, Ziyang
    2024 25TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT, 2024,
  • [37] Assessment of predictive ability of artificial neural networks using holographic mapping
    Tompos, Andras
    Vegvari, Lajos
    Tfirst, Erno
    Margitfalvi, Jozsef L.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2007, 10 (02) : 121 - 134
  • [38] Predictive Soft Modeling of Turning Parameters Using Artificial Neural Network
    Gupta, N.
    Walia, R. S.
    RECENT ADVANCES IN SMART MANUFACTURING AND MATERIALS, ICEM 2020, 2021, : 189 - 196
  • [39] Fatigue Characterization of WMA and Modeling Using Artificial Neural Networks
    Abd, Duraid M.
    Al-Khalid, Hussain
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2022, 34 (03)
  • [40] In Silico Modeling of Pharmaceutical Formulation using Artificial Neural Networks
    Piriyaprasarth, S.
    Patomchaiviwat, V.
    Sriamonsak, P.
    2009 INTERNATIONAL CONFERENCE ON BIOMEDICAL AND PHARMACEUTICAL ENGINEERING, 2009, : 154 - 158