Shoreline predictive modeling using artificial neural networks

被引:5
作者
Goncalves, Rodrigo Mikosz [1 ,2 ]
Coelho, Leandro Dos Santos [3 ]
Krueger, Claudia Pereira [2 ]
Heck, Bernhard [4 ]
机构
[1] Univ Fed Pernambuco UFPE, CTG, Dept Engn Cartog, Recife, PE, Brazil
[2] Univ Fed Parana UFPR, Programa Posgrad Ciencias Geodes, Curitiba, Parana, Brazil
[3] Pontificia Univ Catolica Parana PUC PR, Programa Posgrad Engn Prod & Sistemas, Curitiba, Parana, Brazil
[4] Geodet Inst Karlsruhe, Karlsruhe Inst Technol, Karlsruhe, Alemanha, Germany
来源
BOLETIM DE CIENCIAS GEODESICAS | 2010年 / 16卷 / 03期
关键词
Coastal Mapping; Artificial Neural Network; Prediction Models; Shoreline;
D O I
10.1590/S1982-21702010000300004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of models using geodetic temporal data which can possibly predict the shoreline position is an important task and can significantly contribute to coastal management. The studied area is located at municipality of Matinhos in the Parana State, Brazil. The temporal shoreline used to test the prediction model is respectively from analog photogrammetric data, related to the years 1954, 1963, 1980, 1991 and 1997, and GPS (Global Position System) geodetic surveys for 2001, 2002, 2005 and 2008 (as control). Two different tests with artificial neural network were organized setting the parameters like: architecture, number of neuron in hidden layers and the training algorithms. Comparing the residuals between the prediction to the shoreline of control, the best statistical results show the MAPE (Mean Absolute Percentage Error) is 0,28% using the Elman partially recurrent network with quasi-Newton training function and 0,46% using the neural network multilayer perceptron with Bayesian regulation training function.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 50 条
  • [21] Experimental investigation and predictive modeling of shear performance for concrete-encased steel beams using artificial neural networks
    Wang, Jun
    Cui, Menglin
    MATERIALS AND STRUCTURES, 2023, 56 (08)
  • [22] Modeling number of firefighters responding to an incident using artificial neural networks
    Sadeghi-Naini, Ali
    Asgary, Ali
    INTERNATIONAL JOURNAL OF EMERGENCY SERVICES, 2013, 2 (02) : 104 - 118
  • [23] Modeling of MOSFETs Altered by Ionizing Radiation Using Artificial Neural Networks
    dos Santos, Lucas S. A.
    Allegro, Paula R. P.
    Guazzelli, Marcilei A.
    Guidi, Ana L.
    Junior, Paulo R. G.
    Junior, Valdison S. A.
    Toufen, Dennis L.
    Boas, Alexis C. Vilas C.
    BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (04)
  • [24] Intelligent Modeling of Unified Communications Systems Using Artificial Neural Networks
    Ivanov, Oleksii
    Koretska, Liudmyla
    Lytvynenko, Volodymyr
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGIES & SYSTEMS OF INFORMATION SECURITY (INTELITSIS 2020), VOL 1, 2020, 2623 : 77 - 84
  • [25] Modeling of laser welding of stainless steel using artificial neural networks
    Banerjee, N.
    Biswas, A. R.
    Kumar, M.
    Sen, A.
    Maity, S. R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1784 - 1788
  • [26] Modeling consideration sets and brand choice using artificial neural networks
    Vroomen, B
    Franses, PH
    van Nierop, E
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 154 (01) : 206 - 217
  • [27] Modeling of hourly river water temperatures using artificial neural networks
    Hebert, Cindie
    Caissie, Daniel
    Satish, Mysore G.
    El-Jabi, Nassir
    WATER QUALITY RESEARCH JOURNAL OF CANADA, 2014, 49 (02): : 144 - 162
  • [28] Modeling of MOSFETs Altered by Ionizing Radiation Using Artificial Neural Networks
    Lucas S. A. dos Santos
    Paula R. P. Allegro
    Marcilei A. Guazzelli
    Ana L. Guidi
    Paulo R. G. Junior
    Valdison S. A. Junior
    Dennis L. Toufen
    Alexis C. Vilas Bôas
    Brazilian Journal of Physics, 2023, 53
  • [29] Modeling of thermotransport phenomenon in metal alloys using artificial neural networks
    Srinivasan, Seshasai
    Saghir, M. Ziad
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (05) : 2850 - 2869
  • [30] Modeling the Direct Synthesis of Dimethyl Ether using Artificial Neural Networks
    Delgado Otalvaro, Nirvana
    Gul Bilir, Pembe
    Herrera Delgado, Karla
    Pitter, Stephan
    Sauer, Joerg
    CHEMIE INGENIEUR TECHNIK, 2021, 93 (05) : 754 - 761