Shoreline predictive modeling using artificial neural networks

被引:5
|
作者
Goncalves, Rodrigo Mikosz [1 ,2 ]
Coelho, Leandro Dos Santos [3 ]
Krueger, Claudia Pereira [2 ]
Heck, Bernhard [4 ]
机构
[1] Univ Fed Pernambuco UFPE, CTG, Dept Engn Cartog, Recife, PE, Brazil
[2] Univ Fed Parana UFPR, Programa Posgrad Ciencias Geodes, Curitiba, Parana, Brazil
[3] Pontificia Univ Catolica Parana PUC PR, Programa Posgrad Engn Prod & Sistemas, Curitiba, Parana, Brazil
[4] Geodet Inst Karlsruhe, Karlsruhe Inst Technol, Karlsruhe, Alemanha, Germany
来源
BOLETIM DE CIENCIAS GEODESICAS | 2010年 / 16卷 / 03期
关键词
Coastal Mapping; Artificial Neural Network; Prediction Models; Shoreline;
D O I
10.1590/S1982-21702010000300004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of models using geodetic temporal data which can possibly predict the shoreline position is an important task and can significantly contribute to coastal management. The studied area is located at municipality of Matinhos in the Parana State, Brazil. The temporal shoreline used to test the prediction model is respectively from analog photogrammetric data, related to the years 1954, 1963, 1980, 1991 and 1997, and GPS (Global Position System) geodetic surveys for 2001, 2002, 2005 and 2008 (as control). Two different tests with artificial neural network were organized setting the parameters like: architecture, number of neuron in hidden layers and the training algorithms. Comparing the residuals between the prediction to the shoreline of control, the best statistical results show the MAPE (Mean Absolute Percentage Error) is 0,28% using the Elman partially recurrent network with quasi-Newton training function and 0,46% using the neural network multilayer perceptron with Bayesian regulation training function.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 50 条
  • [21] Soft sensor modeling using artificial neural networks
    Nandakumar, V.
    HYDROCARBON PROCESSING, 2009, 88 (03): : 39 - 43
  • [22] Modeling Data Quality Using Artificial Neural Networks
    Laufer, Ralf
    Schwieger, Volker
    1ST INTERNATIONAL WORKSHOP ON THE QUALITY OF GEODETIC OBSERVATION AND MONITORING SYSTEMS (QUGOMS'11), 2015, 140 : 3 - 8
  • [23] Using artificial neural networks in the modeling of the hydrocracking process
    Elkamel, A
    Al-Ajmi, A
    Fahim, M
    Al-Sahhaf, T
    PROCEEDINGS OF THE SIMULATORS INTERNATIONAL XV, 1998, 30 (03): : 23 - 28
  • [24] Modeling of Soldering Quality by Using Artificial Neural Networks
    Liukkonen, Mika
    Hiltunen, Teri
    Havia, Elina
    Leinonen, Hannu
    Hiltunen, Yrjo
    IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, 2009, 32 (02): : 89 - 96
  • [25] Modeling environmental noise using Artificial Neural Networks
    Genaro, N.
    Torija, A.
    Ramos, A.
    Requena, I.
    Ruiz, D. P.
    Zamorano, M.
    2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 215 - +
  • [26] Weld modeling and control using artificial neural networks
    Cook, GE
    Barnett, RJ
    Andersen, K
    Strauss, AM
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1995, 31 (06) : 1484 - 1491
  • [27] Modeling magnetic materials using artificial neural networks
    Saliah, HH
    Lowther, DA
    Forghani, B
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 3056 - 3059
  • [28] Predictive modeling of garlic quality in hybrid infrared-convective drying using artificial neural networks
    El-Mesery, Hany S.
    Qenawy, Mohamed
    Li, Jian
    El-Sharkawy, Mahmoud
    Du, Daolin
    FOOD AND BIOPRODUCTS PROCESSING, 2024, 145 : 226 - 238
  • [29] Predictive modeling of membrane reactor efficiency using advanced artificial neural networks for green hydrogen production
    Mahmoudi, Mehrdad
    Ghaemi, Ahad
    Kelishami, Ahmad Rahbar
    Movahedirad, Salman
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Predictive Modeling of the Mechanical Properties of Alpha Alumina Using Artificial Neural Networks and Multiple Linear Regression
    Belghalem, H.
    Fissah, B.
    Djeddou, M.
    Hamidouche, M.
    GLASS AND CERAMICS, 2023, 80 (7-8) : 347 - 354