Shoreline predictive modeling using artificial neural networks

被引:5
|
作者
Goncalves, Rodrigo Mikosz [1 ,2 ]
Coelho, Leandro Dos Santos [3 ]
Krueger, Claudia Pereira [2 ]
Heck, Bernhard [4 ]
机构
[1] Univ Fed Pernambuco UFPE, CTG, Dept Engn Cartog, Recife, PE, Brazil
[2] Univ Fed Parana UFPR, Programa Posgrad Ciencias Geodes, Curitiba, Parana, Brazil
[3] Pontificia Univ Catolica Parana PUC PR, Programa Posgrad Engn Prod & Sistemas, Curitiba, Parana, Brazil
[4] Geodet Inst Karlsruhe, Karlsruhe Inst Technol, Karlsruhe, Alemanha, Germany
来源
BOLETIM DE CIENCIAS GEODESICAS | 2010年 / 16卷 / 03期
关键词
Coastal Mapping; Artificial Neural Network; Prediction Models; Shoreline;
D O I
10.1590/S1982-21702010000300004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of models using geodetic temporal data which can possibly predict the shoreline position is an important task and can significantly contribute to coastal management. The studied area is located at municipality of Matinhos in the Parana State, Brazil. The temporal shoreline used to test the prediction model is respectively from analog photogrammetric data, related to the years 1954, 1963, 1980, 1991 and 1997, and GPS (Global Position System) geodetic surveys for 2001, 2002, 2005 and 2008 (as control). Two different tests with artificial neural network were organized setting the parameters like: architecture, number of neuron in hidden layers and the training algorithms. Comparing the residuals between the prediction to the shoreline of control, the best statistical results show the MAPE (Mean Absolute Percentage Error) is 0,28% using the Elman partially recurrent network with quasi-Newton training function and 0,46% using the neural network multilayer perceptron with Bayesian regulation training function.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 50 条
  • [1] Artificial neural networks for predictive modeling in prostate cancer
    Gamito E.J.
    Crawford E.D.
    Current Oncology Reports, 2004, 6 (3) : 216 - 221
  • [2] SPATIAL PREDICTIVE MAPPING USING ARTIFICIAL NEURAL NETWORKS
    Noack, S.
    Knobloch, A.
    Etzold, S. H.
    Barth, A.
    Kallmeier, E.
    ISPRS TECHNICAL COMMISSION II SYMPOSIUM, 2014, 40-2 : 79 - 86
  • [3] Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach
    Schmitz, Benedikt
    Scheuren, Stefan
    JOURNAL OF NUCLEAR ENGINEERING, 2024, 5 (02): : 114 - 127
  • [4] Modeling of fuel consumption using artificial neural networks
    WITASZEK K.
    Diagnostyka, 2020, 21 (04): : 103 - 113
  • [5] Predictive modeling of garlic quality in hybrid infrared-convective drying using artificial neural networks
    El-Mesery, Hany S.
    Qenawy, Mohamed
    Li, Jian
    El-Sharkawy, Mahmoud
    Du, Daolin
    FOOD AND BIOPRODUCTS PROCESSING, 2024, 145 : 226 - 238
  • [6] Predictive modeling of membrane reactor efficiency using advanced artificial neural networks for green hydrogen production
    Mahmoudi, Mehrdad
    Ghaemi, Ahad
    Kelishami, Ahmad Rahbar
    Movahedirad, Salman
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Developing a predictive model for nanoimprint lithography using artificial neural networks
    Akter, Tahmina
    Desai, Salil
    MATERIALS & DESIGN, 2018, 160 : 836 - 848
  • [8] Predictive modeling of thermal parameters inside the raised floor plenum data center using Artificial Neural Networks
    Saiyad, Anashusen
    Patel, Asif
    Fulpagare, Yogesh
    Bhargav, Atul
    JOURNAL OF BUILDING ENGINEERING, 2021, 42
  • [9] Modeling of phenol degradation system using artificial neural networks
    S. M. Balan
    G. Annadurai
    R. Y. Sheeja
    V. R. Srinivasamoorthy
    T. Murugesan
    Bioprocess Engineering, 1999, 21 : 129 - 134
  • [10] Modeling of phenol degradation system using artificial neural networks
    Balan, SM
    Annadurai, C
    Sheeja, RY
    Srinivasamoorthy, VR
    Murugesan, T
    BIOPROCESS ENGINEERING, 1999, 21 (02) : 129 - 134