机构:
No Illinois Univ, Dept Math, De Kalb, IL 60115 USANo Illinois Univ, Dept Math, De Kalb, IL 60115 USA
Kong, Qingkai
[1
]
Wang, Xiaofei
论文数: 0引用数: 0
h-index: 0
机构:
No Illinois Univ, Dept Math, De Kalb, IL 60115 USANo Illinois Univ, Dept Math, De Kalb, IL 60115 USA
Wang, Xiaofei
[1
]
机构:
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
来源:
DYNAMIC SYSTEMS AND APPLICATIONS
|
2010年
/
19卷
/
01期
关键词:
EXISTENCE;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the nonlinear initial value problem consisting of the equation -[p(t)phi)(y')]'+ q(t)phi(y) = w(t)f(y) with phi(y) = vertical bar y vertical bar(r-1)y for r > 0 and the initial conditions y(t(0)) = y(0), (P(1/r)y')(t(0)) = z(0). By establishing nonlinear integral inequalities and applying a generalized energy function and a generalized Prufer transformation, we prove that the solution of this initial value problem exists on the whole domain and is unique. This paper provides a foundation for a forthcoming paper on the existence of nodal solutioins of second order nonlinear boundary value problems with p-Laplacian.