Smoothness and locality for nonunital spectral triples

被引:48
作者
Rennie, A [1 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
关键词
spectral triples; functional calculus; K-homology; Hochschild homology;
D O I
10.1023/A:1024523203609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To deal with technical issues in noncommutative geometry for nonunital algebras, we introduce a useful class of algebras and their modules. These algebras and modules allow us to extend all of the smoothness results for spectral triples to the nonunital case. In addition, we show that smooth spectral triples are closed under the C-infinity functional calculus of self-adjoint elements. In the final section we show that our algebras allow the formulation of Poincare Duality and that the algebras of smooth spectral triples are H-unital.
引用
收藏
页码:127 / 165
页数:39
相关论文
共 45 条
[41]   Equivariant Spectral Triples for Homogeneous Spaces of the Compact Quantum Group Uq(2) [J].
Guin, Satyajit ;
Saurabh, Bipul .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (03)
[42]   Boundary value problems with Atiyah-Patodi-Singer type conditions and spectral triples [J].
Battisti, Ubertino ;
Seiler, Joerg .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (03) :887-917
[43]   Torus Equivariant Spectral Triples for Odd-Dimensional Quantum Spheres Coming from C*-Extensions [J].
Partha Sarathi Chakraborty ;
Arupkumar Pal .
Letters in Mathematical Physics, 2007, 80 :57-68
[44]   Torus equivariant spectral triples for odd-dimensional quantum spheres coming from C*-extensions [J].
Chakraborty, Partha Sarathi ;
Pal, Arupkumar .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 80 (01) :57-68
[45]   Equivariant Spectral Triples for Homogeneous Spaces of the Compact Quantum Group Uq(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q(2)$$\end{document} [J].
Satyajit Guin ;
Bipul Saurabh .
Mathematical Physics, Analysis and Geometry, 2022, 25 (3)