Smoothness and locality for nonunital spectral triples

被引:48
作者
Rennie, A [1 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
关键词
spectral triples; functional calculus; K-homology; Hochschild homology;
D O I
10.1023/A:1024523203609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To deal with technical issues in noncommutative geometry for nonunital algebras, we introduce a useful class of algebras and their modules. These algebras and modules allow us to extend all of the smoothness results for spectral triples to the nonunital case. In addition, we show that smooth spectral triples are closed under the C-infinity functional calculus of self-adjoint elements. In the final section we show that our algebras allow the formulation of Poincare Duality and that the algebras of smooth spectral triples are H-unital.
引用
收藏
页码:127 / 165
页数:39
相关论文
共 45 条
[31]   The Gromov-Hausdorff propinquity for metric spectral triples [J].
Latremoliere, Frederic .
ADVANCES IN MATHEMATICS, 2022, 404
[32]   Dimensions and singular traces for spectral triples, with applications to fractals [J].
Guido, D ;
Isola, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :362-400
[33]   Spectral triples for AF C*-algebras and metrics on the cantor set [J].
Christensen, Erik ;
Ivan, Cristina .
JOURNAL OF OPERATOR THEORY, 2006, 56 (01) :17-46
[34]   Derivations and spectral triples on quantum domains II: Quantum annulus [J].
Slawomir Klimek ;
Matt McBride ;
Sumedha Rathnayake .
Science China Mathematics, 2019, 62 :2463-2486
[35]   Derivations and spectral triples on quantum domains II: Quantum annulus [J].
Klimek, Slawomir ;
McBride, Matt ;
Rathnayake, Sumedha .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) :2463-2486
[36]   Spectral triples for noncommutative solenoidal spaces from self-coverings [J].
Aiello, Valeriano ;
Guido, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1378-1412
[37]   Fractal spectral triples on Kellendonk's C*-algebra of a substitution tiling [J].
Mampusti, Michael ;
Whittaker, Michael F. .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 :224-239
[38]   Spectral triples, Coulhon-Varopoulos dimension and heat kernel estimates [J].
Arhancet, Cedric .
ADVANCES IN MATHEMATICS, 2024, 451
[39]   Metric approximations of spectral triples on the Sierpinski gasket and other fractal curves [J].
Landry, Therese-Marie ;
Lapidus, Michel L. ;
Latremoliere, Frederic .
ADVANCES IN MATHEMATICS, 2021, 385
[40]   Dirac operators and spectral triples for some fractal sets built on curves [J].
Christensen, Erik ;
Ivan, Cristina ;
Lapidus, Michel L. .
ADVANCES IN MATHEMATICS, 2008, 217 (01) :42-78