Smoothness and locality for nonunital spectral triples

被引:48
作者
Rennie, A [1 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
关键词
spectral triples; functional calculus; K-homology; Hochschild homology;
D O I
10.1023/A:1024523203609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To deal with technical issues in noncommutative geometry for nonunital algebras, we introduce a useful class of algebras and their modules. These algebras and modules allow us to extend all of the smoothness results for spectral triples to the nonunital case. In addition, we show that smooth spectral triples are closed under the C-infinity functional calculus of self-adjoint elements. In the final section we show that our algebras allow the formulation of Poincare Duality and that the algebras of smooth spectral triples are H-unital.
引用
收藏
页码:127 / 165
页数:39
相关论文
共 45 条
[21]   Modular spectral triples and deformed Fredholm modules [J].
Fabio Ciolli ;
Francesco Fidaleo .
Annals of Functional Analysis, 2022, 13
[22]   On Twisting Real Spectral Triples by Algebra Automorphisms [J].
Giovanni Landi ;
Pierre Martinetti .
Letters in Mathematical Physics, 2016, 106 :1499-1530
[23]   Levi-Civita connections for a class of spectral triples [J].
Bhowmick, Jyotishman ;
Goswami, Debashish ;
Mukhopadhyay, Sugato .
LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (04) :835-884
[24]   Spectral triples and differential calculi related to the Kronecker foliation [J].
Matthes, R ;
Richter, O ;
Rudolph, G .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 46 (01) :48-73
[25]   Derivations and spectral triples on quantum domains Ⅱ: Quantum annulus [J].
Slawomir Klimek ;
Matt Mc Bride ;
Sumedha Rathnayake .
Science China(Mathematics), 2019, 62 (12) :2463-2486
[26]   Pseudo-Riemannian spectral triples and the harmonic oscillator [J].
van den Dungen, Koen ;
Paschke, Mario ;
Rennie, Adam .
JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 :37-55
[27]   Levi-Civita connections for a class of spectral triples [J].
Jyotishman Bhowmick ;
Debashish Goswami ;
Sugato Mukhopadhyay .
Letters in Mathematical Physics, 2020, 110 :835-884
[28]   Equivariant spectral triples on the quantum SU(2) group [J].
Chakraborty, PS ;
Pal, A .
K-THEORY, 2003, 28 (02) :107-126
[29]   Spectral triples for noncommutative solenoids and a Wiener's lemma [J].
Farsi, Carla ;
Landry, Therese ;
Larsen, Nadia S. ;
Packer, Judith .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (04) :1415-1452
[30]   Quantum Isometry Group for Spectral Triples with Real Structure [J].
Goswami, Debashish .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6