Molecular mechanisms of axonal damage in inflammatory central nervous system diseases

被引:91
作者
Neumann, H [1 ]
机构
[1] European Neuosci Inst Gottingen, Neuroimmunol Unit, D-37073 Gottingen, Germany
关键词
axonal transport; CD8(+) T cells; microglia; multiple sclerosis; neuroinflammation;
D O I
10.1097/00019052-200306000-00004
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose of review Axonal dysfunction and damage is an early pathological sign of autoimmune central nervous system disease, viral and bacterial infections, and brain trauma. Axonal injury has attracted considerable interest during the past few years because the degree of axonal damage appears to determine long-term clinical outcome. Recent findings Advanced magnetic resonance spectroscopic imaging techniques have suggested that axonal loss and dysfunction is responsible for the persistent neurological deficits that occur in patients with multiple sclerosis. Histopathological methods have shown that axonal damage is defined primarily by dysfunction of axonal transport, and finally by complete transection and degeneration of axons. Recent studies have demonstrated that the extent of axonal damage in the primary demyelinating lesion of multiple sclerosis patients is associated with the number of activated microglia/macrophages and cytotoxic CD8(+) T lymphocytes. In addition, diffuse axonal dysfunction independent of demyelination develops in normal appearing white matter, possibly due to indirect effects of inflammation. Summary The fact that axonal damage in response to overt inflammatory reactions may occur gradually, leaving a window for therapeutical intervention, has important clinical implications. Determination of the exact molecular mechanism might help in finding new therapies for inflammatory axonal damage.
引用
收藏
页码:267 / 273
页数:7
相关论文
共 67 条
[1]   A role for caspase-1 and-3 in the pathology of experimental allergic encephalomyelitis -: Inflammation versus degeneration [J].
Ahmed, Z ;
Doward, AI ;
Pryce, G ;
Taylor, DL ;
Pocock, JM ;
Leonard, JP ;
Baker, D ;
Cuzner, ML .
AMERICAN JOURNAL OF PATHOLOGY, 2002, 161 (05) :1577-1586
[2]   Immune function of microglia [J].
Aloisi, F .
GLIA, 2001, 36 (02) :165-179
[3]   MRI in the diagnosis and management of multiple sclerosis [J].
Arnold, DL ;
Matthews, PM .
NEUROLOGY, 2002, 58 (08) :S23-S31
[4]   Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction [J].
Babbe, H ;
Roers, A ;
Waisman, A ;
Lassmann, H ;
Goebels, N ;
Hohlfeld, R ;
Friese, M ;
Schröder, R ;
Deckert, M ;
Schmidt, S ;
Ravid, R ;
Rajewsky, K .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 192 (03) :393-404
[5]   Acute axonal injury in multiple sclerosis -: Correlation with demyelination and inflammation [J].
Bitsch, A ;
Schuchardt, J ;
Bunkowski, S ;
Kuhlmann, T ;
Brück, W .
BRAIN, 2000, 123 :1174-1183
[6]   Axonal loss in normal-appearing white matter in a patient with acute MS [J].
Bjartmar, C ;
Kinkel, RP ;
Kidd, G ;
Rudick, RA ;
Trapp, BD .
NEUROLOGY, 2001, 57 (07) :1248-1252
[7]   Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis [J].
Chang, A ;
Tourtellotte, WW ;
Rudick, R ;
Trapp, BD .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (03) :165-173
[8]   Axon pathology in neurological disease: a neglected therapeutic target [J].
Coleman, MP ;
Perry, VH .
TRENDS IN NEUROSCIENCES, 2002, 25 (10) :532-537
[9]  
COWAN WM, 1970, CONT RES METHODS NEU, P341
[10]   Early N-acetylaspartate depletion is a marker of neuronal dysfunction in rats and primates chronically treated with the mitochondrial toxin 3-nitropropionic acid [J].
Dautry, W ;
Vaufrey, F ;
Brouillet, E ;
Bizat, N ;
Henry, PG ;
Condé, F ;
Bloch, G ;
Hantraye, P .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (05) :789-799