Artificial Neural Networks for Acoustic Lung Signals Classification

被引:0
作者
Orjuela-Canon, Alvaro D. [1 ]
Gomez-Cajas, Diego F. [1 ]
Jimenez-Moreno, Robinson [2 ]
机构
[1] Univ Antonio Narino, Elect & Biomed Fac, GIBIO, Bogota, Colombia
[2] Univ Antonio Narino, GRITEL, Dept Elect Engn, Bogota, Colombia
来源
PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014 | 2014年 / 8827卷
关键词
Artificial Neural Networks; Multilayer Perceptron; Mel Frequency Cepstral Coefficients; Acoustic Lung Signals; SOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A classification of acoustic lung signals for the respiratory disease diagnosis problem is studied in the present work. Models based on artificial neural networks, using Mel Frequency Cepstral Coefficients for training are employed in this task. Results show that neural networks are comparable, and in some cases better, with other classification techniques as Gaussian Mixture Models, that work on the same database.
引用
收藏
页码:214 / 221
页数:8
相关论文
共 22 条
[11]  
Kohavi R., 1995, IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, P1137
[12]  
Kumar D.S., 2011, INT J COMPUTER SCI, V8
[13]  
Mayorga P., 2010, 32 ANN INT C IEEE EM
[14]  
Mayorga P., 2011, PAN AM HLTH CAR EXCH
[15]  
Rabiner L. R., 1993, Fundamentals of Speech Recognition
[16]  
Riedmiller M., 1994, TECHNICAL REPORT
[17]  
Santos AM, 2006, ADV STAT METHODS HLT, P279
[18]   ABNORMAL LUNG SOUNDS IN PATIENTS WITH ASTHMA DURING EPISODES WITH NORMAL LUNG-FUNCTION [J].
SCHREUR, HJW ;
VANDERSCHOOT, J ;
ZWINDERMAN, AH ;
DIJKMAN, JH ;
STERK, PJ .
CHEST, 1994, 106 (01) :91-99
[19]  
Sovijarvi A.R.A., 2000, Eur. Respir. Rev., V10, P591
[20]   Leave-one-out bounds for kernel methods [J].
Zhang, T .
NEURAL COMPUTATION, 2003, 15 (06) :1397-1437