Quantum technologies with optically interfaced solid-state spins

被引:755
作者
Awschalom, David D. [1 ,2 ,3 ]
Hanson, Ronald [4 ,5 ]
Wrachtrup, Joerg [6 ,7 ,8 ]
Zhou, Brian B. [1 ,9 ]
机构
[1] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Inst Mol Engn, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Delft Univ Technol, QuTech, Delft, Netherlands
[5] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[6] Univ Stuttgart, IQST, Stuttgart, Germany
[7] Univ Stuttgart, Phys Inst 3, Stuttgart, Germany
[8] Max Planck Inst Solid State Res, Stuttgart, Germany
[9] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; ERROR-CORRECTION; SINGLE-PHOTON; COHERENT CONTROL; VACANCY SPIN; ENTANGLEMENT; SPECTROSCOPY; STORAGE; QUBITS; MEMORY;
D O I
10.1038/s41566-018-0232-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spins of impurities in solids provide a unique architecture to realize quantum technologies. A quantum register of electron and nearby nuclear spins in the lattice encompasses high-fidelity state manipulation and readout, long-lived quantum memory, and long-distance transmission of quantum states by optical transitions that coherently connect spins and photons. These features, combined with solid-state device engineering, establish impurity spins as promising resources for quantum networks, information processing and sensing. Focusing on optical methods for the access and connectivity of single spins, we review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon. We project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.
引用
收藏
页码:516 / 527
页数:12
相关论文
共 161 条
[1]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[2]   Diamond Nanophotonics [J].
Aharonovich, Igor ;
Neu, Elke .
ADVANCED OPTICAL MATERIALS, 2014, 2 (10) :911-928
[3]   Long-range spin wave mediated control of defect qubits in nanodiamonds [J].
Andrich, Paolo ;
de las Casas, Charles F. ;
Liu, Xiaoying ;
Bretscher, Hope L. ;
Berman, Jonson R. ;
Heremans, F. Joseph ;
Nealey, Paul F. ;
Awschalom, David D. .
NPJ QUANTUM INFORMATION, 2017, 3
[4]   Nanoscale microwave imaging with a single electron spin in diamond [J].
Appel, Patrick ;
Ganzhorn, Marc ;
Neu, Elke ;
Maletinsky, Patrick .
NEW JOURNAL OF PHYSICS, 2015, 17
[5]   Nanoscale nuclear magnetic resonance with chemical resolution [J].
Aslam, Nabeel ;
Pfender, Matthias ;
Neumann, Philipp ;
Reuter, Rolf ;
Zappe, Andrea ;
de Oliveira, Felipe Favaro ;
Denisenko, Andrej ;
Sumiya, Hitoshi ;
Onoda, Shinobu ;
Isoya, Junichi ;
Wrachtrup, Joerg .
SCIENCE, 2017, 357 (6346) :67-71
[6]   Solid-state electron spin lifetime limited by phononic vacuum modes [J].
Astner, T. ;
Gugler, J. ;
Angerer, A. ;
Wald, S. ;
Putz, S. ;
Mauser, N. J. ;
Trupke, M. ;
Sumiya, H. ;
Onoda, S. ;
Isoya, J. ;
Schmiedmayer, J. ;
Mohn, P. ;
Majer, J. .
NATURE MATERIALS, 2018, 17 (04) :313-+
[7]   Coherent Coupling of Remote Spin Ensembles via a Cavity Bus [J].
Astner, T. ;
Nevlacsil, S. ;
Peterschofsky, N. ;
Angerer, A. ;
Rotter, S. ;
Putz, S. ;
Schmiedmayer, J. ;
Majer, J. .
PHYSICAL REVIEW LETTERS, 2017, 118 (14)
[8]   Material platforms for spin-based photonic quantum technologies [J].
Atature, Mete ;
Englund, Dirk ;
Vamivakas, Nick ;
Lee, Sang-Yun ;
Wrachtrup, Joerg .
NATURE REVIEWS MATERIALS, 2018, 3 (05) :38-51
[9]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[10]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4