Quantum technologies with optically interfaced solid-state spins

被引:692
作者
Awschalom, David D. [1 ,2 ,3 ]
Hanson, Ronald [4 ,5 ]
Wrachtrup, Joerg [6 ,7 ,8 ]
Zhou, Brian B. [1 ,9 ]
机构
[1] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Inst Mol Engn, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Delft Univ Technol, QuTech, Delft, Netherlands
[5] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[6] Univ Stuttgart, IQST, Stuttgart, Germany
[7] Univ Stuttgart, Phys Inst 3, Stuttgart, Germany
[8] Max Planck Inst Solid State Res, Stuttgart, Germany
[9] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; ERROR-CORRECTION; SINGLE-PHOTON; COHERENT CONTROL; VACANCY SPIN; ENTANGLEMENT; SPECTROSCOPY; STORAGE; QUBITS; MEMORY;
D O I
10.1038/s41566-018-0232-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spins of impurities in solids provide a unique architecture to realize quantum technologies. A quantum register of electron and nearby nuclear spins in the lattice encompasses high-fidelity state manipulation and readout, long-lived quantum memory, and long-distance transmission of quantum states by optical transitions that coherently connect spins and photons. These features, combined with solid-state device engineering, establish impurity spins as promising resources for quantum networks, information processing and sensing. Focusing on optical methods for the access and connectivity of single spins, we review recent progress in impurity systems such as colour centres in diamond and silicon carbide, rare-earth ions in solids and donors in silicon. We project a possible path to chip-scale quantum technologies through sustained advances in nanofabrication, quantum control and materials engineering.
引用
收藏
页码:516 / 527
页数:12
相关论文
共 161 条
  • [1] Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
  • [2] Diamond Nanophotonics
    Aharonovich, Igor
    Neu, Elke
    [J]. ADVANCED OPTICAL MATERIALS, 2014, 2 (10): : 911 - 928
  • [3] Long-range spin wave mediated control of defect qubits in nanodiamonds
    Andrich, Paolo
    de las Casas, Charles F.
    Liu, Xiaoying
    Bretscher, Hope L.
    Berman, Jonson R.
    Heremans, F. Joseph
    Nealey, Paul F.
    Awschalom, David D.
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [4] Nanoscale microwave imaging with a single electron spin in diamond
    Appel, Patrick
    Ganzhorn, Marc
    Neu, Elke
    Maletinsky, Patrick
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [5] Nanoscale nuclear magnetic resonance with chemical resolution
    Aslam, Nabeel
    Pfender, Matthias
    Neumann, Philipp
    Reuter, Rolf
    Zappe, Andrea
    de Oliveira, Felipe Favaro
    Denisenko, Andrej
    Sumiya, Hitoshi
    Onoda, Shinobu
    Isoya, Junichi
    Wrachtrup, Joerg
    [J]. SCIENCE, 2017, 357 (6346) : 67 - 71
  • [6] Solid-state electron spin lifetime limited by phononic vacuum modes
    Astner, T.
    Gugler, J.
    Angerer, A.
    Wald, S.
    Putz, S.
    Mauser, N. J.
    Trupke, M.
    Sumiya, H.
    Onoda, S.
    Isoya, J.
    Schmiedmayer, J.
    Mohn, P.
    Majer, J.
    [J]. NATURE MATERIALS, 2018, 17 (04) : 313 - +
  • [7] Coherent Coupling of Remote Spin Ensembles via a Cavity Bus
    Astner, T.
    Nevlacsil, S.
    Peterschofsky, N.
    Angerer, A.
    Rotter, S.
    Putz, S.
    Schmiedmayer, J.
    Majer, J.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (14)
  • [8] Material platforms for spin-based photonic quantum technologies
    Atature, Mete
    Englund, Dirk
    Vamivakas, Nick
    Lee, Sang-Yun
    Wrachtrup, Joerg
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (05): : 38 - 51
  • [9] Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
  • [10] Solid-state electronic spin coherence time approaching one second
    Bar-Gill, N.
    Pham, L. M.
    Jarmola, A.
    Budker, D.
    Walsworth, R. L.
    [J]. NATURE COMMUNICATIONS, 2013, 4