Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics

被引:52
作者
Termentzidis, Konstantinos [1 ,2 ]
Merabia, Samy [3 ]
Chantrenne, Patrice [1 ,2 ]
Keblinski, Pawel [4 ]
机构
[1] INSA Lyon, CETHIL, UMR5008, F-69621 Villeurbanne, France
[2] Univ Lyon, CNRS, F-69621 Villeurbanne, France
[3] Univ Lyon 1, LPMCN, UMR 5586, F-69621 Villeurbanne, France
[4] RPI, Dept Mat Sci & Engn, Troy, NY USA
关键词
Non-equilibrium molecular dynamics; Green-Kubo; Superlattices; Cross-; in- and intra-plane thermal conductivity; Rough interfaces; Shape of interfaces; HEAT-CONDUCTION; NANOSTRUCTURES; SIMULATION;
D O I
10.1016/j.ijheatmasstransfer.2011.01.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes a heat transfer study of binary Lennard Jones superlattices, focusing on the influence of interface topology on cross-plane thermal conductivity, by using both non-equilibrium and equilibrium molecular dynamics methods. Both methods reveal the same trends of thermal conductivity. In particular, interfacial roughness is shown to slightly increase cross-plane thermal conductivity in comparison to smooth interfaces. Our results highlight paths for optimizing superlattices for thermoelectric conversion applications and for thermal management solutions in micro- and nano-systems. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2014 / 2020
页数:7
相关论文
共 28 条
[1]   Analytical model for the thermal conductivity of nanostructures [J].
Chantrenne, P ;
Barrat, JL .
SUPERLATTICES AND MICROSTRUCTURES, 2004, 35 (3-6) :173-186
[2]   Finite size effects in determination of thermal conductivities: Comparing molecular dynamics results with simple models [J].
Chantrenne, P ;
Barrat, JL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (04) :577-585
[3]   Particularities of heat conduction in nanostructures [J].
Chen, Gang .
JOURNAL OF NANOPARTICLE RESEARCH, 2000, 2 (02) :199-204
[4]   Molecular dynamics calculation of the In-plane thermal conductivity of GaAs/AlAs superlattices [J].
Daly, BC ;
Maris, HJ ;
Tanaka, Y ;
Tamura, S .
PHYSICAL REVIEW B, 2003, 67 (03)
[5]   Molecular dynamics calculation of the thermal conductivity of superlattices [J].
Daly, BC ;
Maris, HJ ;
Imamura, K ;
Tamura, S .
PHYSICAL REVIEW B, 2002, 66 (02) :243011-243017
[6]   Calculation of the thermal conductivity of superlattices by molecular dynamics simulation [J].
Daly, BC ;
Maris, HJ .
PHYSICA B-CONDENSED MATTER, 2002, 316 :247-249
[7]  
Frenkel D., 1996, Understanding Molecular Simulation: from Algorithms to Applications
[8]  
Hansen J.-P., 2006, Theory of Simple Liquids, Vthird
[9]   MOLECULAR-DYNAMICS STUDY OF HEAT-CONDUCTION IN SOLID MATERIALS [J].
KOTAKE, S ;
WAKURI, S .
JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 1994, 37 (01) :103-108
[10]   LATTICE THERMAL-CONDUCTIVITY - A COMPARISON OF MOLECULAR-DYNAMICS AND ANHARMONIC LATTICE-DYNAMICS [J].
LADD, AJC ;
MORAN, B ;
HOOVER, WG .
PHYSICAL REVIEW B, 1986, 34 (08) :5058-5064