Occurrence of aflatoxin in three maize (Zea mays L.) hybrids over 5 years in Northern Mississippi

被引:11
|
作者
Hawkins, Leigh K. [1 ]
Windham, Gary L. [1 ]
Williams, W. Paul [1 ]
机构
[1] USDA ARS, Corn Host Plant Resistance Res Unit, Mississippi State, MS 39762 USA
关键词
aflatoxin; Aspergillus flavus; environment; maize;
D O I
10.1007/s11046-007-9064-1
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Aflatoxins are produced as secondary metabolites under conducive climatic conditions by Aspergillus flavus. The incidence of aflatoxin varies with environmental conditions, genotype, and location. An expanded understanding of the interaction of the plant, fungus, and weather conditions is needed to further elucidate the field infection process of maize by A. flavus and subsequent aflatoxin contamination. One of the problems in evaluating maize hybrids for resistance to kernel infection and aflatoxin contamination is identifying a time period and environmental conditions that are most advantageous. Three maize genotypes (Pioneer Brand 3223, Mo18W x Mp313E, and Mp313E x Mp420) were evaluated from 1998 to 2002 in response to A. flavus inoculation and aflatoxin contamination and weather conditions favorable for aflatoxin contamination were identified. The highest aflatoxin levels were observed in 1998 and 2000 (1186 and 901 ng g(-1); P < 0.0001); while the lowest levels were detected in 1999 (39 ng g(-1)). Pioneer 3223 had significantly higher levels (1198 ng g(-1)) than Mp313E x Mp420 (205 ng g(-1)), and Mo18W x Mp313E (161 ng g(-1); P < 0.0001). The hybrids had six weather-related variables in common that were positively correlated with aflatoxin accumulation. Four of these occurred during 65-85 days after planting and were temperature-related. These results suggest that regardless of the hybrid's maturity or physiological development, the time from 65 to 85 days after planting may be indicative of a period of stress which leads to greater aflatoxin accumulation at harvest.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 50 条
  • [31] Characterization of maize (Zea mays L.) germplasm of Angola
    Bige, T.
    Lorenzoni, C.
    MAYDICA, 2007, 52 (02): : 135 - 144
  • [32] Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut (Arachis hypogaea L.) and Maize (Zea mays L.)
    Soni, Pooja
    Gangurde, Sunil S.
    Ortega-Beltran, Alejandro
    Kumar, Rakesh
    Parmar, Sejal
    Sudini, Hari K.
    Lei, Yong
    Ni, Xinzhi
    Huai, Dongxin
    Fountain, Jake C.
    Njoroge, Samuel
    Mahuku, George
    Radhakrishnan, Thankappan
    Zhuang, Weijian
    Guo, Baozhu
    Liao, Boshou
    Singam, Prashant
    Pandey, Manish K.
    Bandyopadhyay, Ranajit
    Varshney, Rajeev K.
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [33] Microsatellite megatracts in the maize (Zea mays L.) genome
    Ananiev, EV
    Chamberlin, MA
    Klaiber, J
    Svitashev, S
    GENOME, 2005, 48 (06) : 1061 - 1069
  • [34] Microsatellite Fingerprinting of Maize Cultivars (Zea mays L.)
    H. Kaur
    N. K. Sarao
    Y. Vikal
    K. Singh
    R. C. Sharma
    Cereal Research Communications, 2011, 39 : 507 - 514
  • [35] Fusarium -: ear rot in maize (zea mays l.)
    Papst, Christine
    Zellner, Josef
    Venkataratnam, Sadhu
    Eder, Joachim
    GESUNDE PFLANZEN, 2007, 59 (01): : 7 - 16
  • [36] Heterosis and character association in maize (Zea mays L.)
    Das, UR
    Hadiuzzaman, S
    Sarker, RH
    BANGLADESH JOURNAL OF BOTANY, 2001, 30 (02): : 85 - 88
  • [37] HERBICIDE CONTROL OF THE WEEDS IN MAIZE (Zea mays L.)
    Mitkov, Anyo
    Yanev, Mariyan
    Neshev, Nesho
    Tityanov, Miroslav
    Tonev, Tonvo
    SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2019, 62 (01): : 368 - 373
  • [38] EFFICIENCY AND SELECTIVITY OF HERBICIDES IN MAIZE (ZEA MAYS L.)
    Markovic, Mladen
    Protic, Rade
    Protic, Nada
    ROMANIAN AGRICULTURAL RESEARCH, 2008, 25 : 77 - 82
  • [39] The genetics of virus resistance in maize (Zea mays L.)
    Redinbaugh, MG
    Jones, MW
    Gingery, RE
    MAYDICA, 2004, 49 (03): : 183 - 190
  • [40] Microsatellite Fingerprinting of Maize Cultivars (Zea mays L.)
    Kaur, H.
    Sarao, N. K.
    Vikal, Y.
    Singh, K.
    Sharma, R. C.
    CEREAL RESEARCH COMMUNICATIONS, 2011, 39 (04) : 507 - 514