Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries

被引:15
|
作者
Antitomaso, P. [1 ]
Fraisse, B. [1 ]
Sougrati, M. T. [1 ,2 ]
Morato-Lallemand, F. [1 ]
Biscaglia, S. [5 ]
Ayme-Perrot, D. [4 ]
Girard, P. [3 ]
Monconduit, L. [1 ,2 ]
机构
[1] Univ Montpellier, Inst Charles Gerhardt, Lab Agregats Interfaces & Mat Energie, Pl E Bataillon,Bat 15,Cc15, F-34095 Montpellier 5, France
[2] CNRS, FR, Reseau Stockage Electrochim Energie RS2E, F-75700 Paris, France
[3] Direct Sci Total SA, Tour Michelet A, 24 Cours Michelet, F-92069 Paris, France
[4] Hutchinson SA Res Ctr, Rue Gustave Nourry,BP31, F-45120 Chalette Sur Loing, France
[5] ADEME, Dept Energies Renouvelables, 500 Route Lucioles, F-06560 Valbonne, France
关键词
Tin antimonide; Micro waves synthesis; Composite electrode; Batteries; X-RAY-DIFFRACTION; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; COMPOSITES; NANOFIBERS; SN-119;
D O I
10.1016/j.jpowsour.2016.06.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and Sn-119 Mossbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 350
页数:5
相关论文
共 50 条
  • [1] Modifications of graphite material for negative electrode of Li-ion batteries
    Lu, M.
    Yin, G.P.
    Shi, P.F.
    Dianchi/Battery, 2001, 31 (04):
  • [2] Metal hydrides used as negative electrode materials for Li-ion batteries
    Sartori, Sabrina
    Cuevas, Fermin
    Latroche, Michel
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (02): : 1 - 7
  • [3] Metal hydrides used as negative electrode materials for Li-ion batteries
    Sabrina Sartori
    Fermin Cuevas
    Michel Latroche
    Applied Physics A, 2016, 122
  • [4] Nanostructured tin for use as a negative electrode material in Li-ion batteries
    Whitehead, AH
    Elliott, JM
    Owen, JR
    JOURNAL OF POWER SOURCES, 1999, 81 : 33 - 38
  • [5] Nanostructured tin for use as a negative electrode material in Li-ion batteries
    Whitehead, A.H.
    Elliott, J.M.
    Owen, J.R.
    Journal of Power Sources, 1999, 81 : 33 - 38
  • [6] Tin dispersed in an oxide matrix as negative electrode material for Li-ion batteries
    Mouyane, M.
    Aldon, L.
    Womes, M.
    Ducourant, B.
    Jumas, J. -C.
    Olivier-Fourcade, J.
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 818 - 822
  • [7] Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries
    Wang, Xiao Xia
    Wang, Jian Nong
    Chang, Hyuk
    Zhang, Ya Fei
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) : 3613 - 3618
  • [8] A carbon composite for the negative electrode of Li-ion batteries
    Churikov, A. V.
    Gridina, N. A.
    Churikova, N. V.
    NEW CARBON BASED MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE SYSTEMS: BATTERIES, SUPERCAPACITORS AND FUEL CELLS, 2006, 229 : 269 - +
  • [9] Characterization of Carbonaceous Active Materials Used for the Negative Electrode of Li-Ion Batteries and Capacitors
    Takamura, Tsutomu
    ELECTROCHEMISTRY, 2012, 80 (01) : 3 - 14
  • [10] Isothermal Calorimetry Evaluation of Metallurgical Silicon as a Negative Electrode Material for Li-Ion Batteries
    Chevrier, V. L.
    Yan, Zilai
    Glazier, Stephen L.
    Obrovac, M. N.
    Krause, L. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)