High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia

被引:80
作者
Mueller, Stephan [1 ,2 ]
Bexte, Tobias [1 ,2 ,3 ]
Gebel, Veronika [1 ,2 ]
Kalensee, Franziska [1 ,2 ]
Stolzenberg, Eva [1 ,2 ]
Hartmann, Jessica [4 ]
Koehl, Ulrike [5 ,6 ,7 ]
Schambach, Axel [8 ,9 ]
Wels, Winfried S. [3 ,10 ,11 ]
Modlich, Ute [12 ]
Ullrich, Evelyn [1 ,2 ,3 ,11 ]
机构
[1] Goethe Univ, Univ Hosp Frankfurt, Dept Children & Adolescents Med, Expt Immunol, Frankfurt, Germany
[2] Goethe Univ, Univ Hosp Frankfurt, Dept Children & Adolescents Med, Div Pediat Stem Cell Transplantat & Immunol, Frankfurt, Germany
[3] German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Frankfurt, Germany
[4] Paul Ehrlich Inst, Div Med Biotechnol, Langen, Germany
[5] Fraunhofer Inst Cell Therapy & Immunol IZI, Leipzig, Germany
[6] Hannover Med Sch, Inst Cellular Therapeut, Hannover, Germany
[7] Univ Leipzig, Inst Clin Immunol, Fac Med, Leipzig, Germany
[8] Hannover Med Sch, Inst Expt Hematol, Hannover, Germany
[9] Harvard Med Sch, Boston Childrens Hosp, Div Hematol Oncol, Boston, MA 02115 USA
[10] Inst Tumor Biol & Expt Therapy, Georg Speyer Haus, Frankfurt, Germany
[11] Goethe Univ, Frankfurt Canc Inst, Frankfurt, Germany
[12] Paul Ehrlich Inst, Div Vet Med, Res Grp Gene Modificat Stem Cells, Langen, Germany
来源
FRONTIERS IN IMMUNOLOGY | 2020年 / 10卷
关键词
chimeric antigen receptor; natural killer cells; acute lymphoblastic leukemia; alpharetroviral vector; lentiviral vector; gene therapy; CD19; GENE-TRANSFER; NK CELLS; VIVO EXPANSION; FEEDER CELLS; T-CELLS; IMMUNOTHERAPY; VECTORS; SELF; TRANSDUCTION; VECTOFUSIN-1;
D O I
10.3389/fimmu.2019.03123
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] CD19-chimeric antigen receptor-invariant natural killer T cells transactivate NK cells and reduce alloreactivity
    Wesle, Anton
    Ribeiro, Emmanuelle Moraes
    Schairer, Rebekka
    Keppeler, Hildegard
    Korkmaz, Fulya
    Radszuweit, Pia
    Bieber, Kristin
    Lengerke, Claudia
    Schneidawind, Dominik
    Schneidawind, Corina
    CYTOTHERAPY, 2025, 27 (01) : 7 - 15
  • [32] Treatment with anti CD19 chimeric antigen receptor T cells after antibody-based immunotherapy in adults with acute lymphoblastic leukemia
    Danylesko, Ivetta
    Chowers, Guy
    Shouval, Roni
    Besser, Michal J.
    Jacoby, Elad
    Shimoni, Avichai
    Nagler, Arnon
    Avigdor, Abraham
    CURRENT RESEARCH IN TRANSLATIONAL MEDICINE, 2020, 68 (01) : 17 - 22
  • [33] Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials
    Ravianayake, Saumya
    Bilmon, Ian
    Bishop, David
    Dubosq, Ming-Celine
    Blyth, Emily
    Clancy, Leighton
    Gottlieb, David
    Micklethwaite, Kenneth
    CYTOTHERAPY, 2015, 17 (09) : 1251 - 1267
  • [34] Point of care CD19 chimeric antigen receptor (CAR) T-cells for relapsed/ refractory acute myeloid leukemia (AML) with aberrant CD19 antigen expression
    Danylesko, Ivetta
    Shem-Tov, Noga
    Yerushalmi, Ronit
    Jacoby, Elad
    Toren, Amos
    Shouval, Roni
    Itzhaki, Orit
    Avigdor, Abraham
    Shimoni, Avichai
    Nagler, Arnon
    CURRENT RESEARCH IN TRANSLATIONAL MEDICINE, 2024, 72 (04)
  • [35] Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia
    Runxia Gu
    Fang Liu
    Dehui Zou
    Yingxi Xu
    Yang Lu
    Bingcheng Liu
    Wei Liu
    Xiaojuan Chen
    Kaiqi Liu
    Ye Guo
    Xiaoyuan Gong
    Rui Lv
    Xia Chen
    Chunlin Zhou
    Mengjun Zhong
    Huijun Wang
    Hui Wei
    Yingchang Mi
    Lugui Qiu
    Lulu Lv
    Min Wang
    Ying Wang
    Xiaofan Zhu
    Jianxiang Wang
    Journal of Hematology & Oncology, 13
  • [36] Kinetics of immune reconstitution after anti-CD19 chimeric antigen receptor T cell therapy in relapsed or refractory acute lymphoblastic leukemia patients
    Wang, Ying
    Li, Hujun
    Song, Xuguang
    Qi, Kunming
    Cheng, Hai
    Cao, Jiang
    Shi, Ming
    Yan, Zhiling
    Jing, Guangjun
    Pan, Bin
    Sang, Wei
    Wang, Xiangmin
    Zhao, Kai
    Chen, Chong
    Chen, Wei
    Zheng, Junnian
    Li, Zhenyu
    Xu, Kailin
    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2021, 43 (02) : 250 - 258
  • [37] Anti-TIM3 chimeric antigen receptor-natural killer cells preferentially target primitive acute myeloid leukemia cells with minimal fratricide and exhaustion
    Klaihmon, Phatchanat
    Samart, Parinya
    Rojanasakul, Yon
    Issaragrisil, Surapol
    Luanpitpong, Sudjit
    EXPERIMENTAL HEMATOLOGY & ONCOLOGY, 2024, 13 (01)
  • [38] A CD123-specific chimeric antigen receptor augments anti-acute myeloid leukemia activity of Vγ9Vδ2 T cells
    Zhang, Xi
    Ang, Wei Xia
    Du, Zhicheng
    Ng, Yu Yang
    Zha, Shijun
    Chen, Can
    Xiao, Lin
    Ng, Jia Yi
    Chng, Wee Joo
    Wang, Shu
    IMMUNOTHERAPY, 2022, 14 (05) : 321 - 336
  • [39] Complete remission in refractory acute lymphoblastic leukemia using blinatumomab after failure of response to CD-19 chimeric antigen receptor T-cell therapy
    Tambaro, Francesco Paolo
    Khazal, Sajad
    Nunez, Cesar
    Ragoonanan, Dristhi
    Tewari, Priti
    Petropoulos, Demetrios
    Kebriaei, Partow
    Wierda, William George
    Mahadeo, Kris Michael
    CLINICAL CASE REPORTS, 2020, 8 (09): : 1678 - 1681
  • [40] CCR7 expression in CD19 chimeric antigen receptor-engineered natural killer cells improves migration toward CCL19-expressing lymphoma cells and increases tumor control in mice with human lymphoma
    Schomer, Nathan T.
    Jiang, Ziyue Karen
    Lloyd, Marit I.
    Klingemann, Hans
    Boissel, Laurent
    CYTOTHERAPY, 2022, 24 (08) : 827 - 834